| INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
| Advances in the Application of Typical Micro-Nano Fabrication Technologies in the Controlled Preparation and Surface Modification of Novel Energetic Materials |
| LI Qiong1, QIN Lijun1,2, LI Dan1, HU Yiyun1, FENG Hao1,*
|
1 National Key Laboratory of Energetic Materials, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China 2 School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China |
|
|
|
|
Abstract Energetic materials are the primary energy source for the launch, propulsion, damage, and control of weapon systems, and they are crucial for achieving national defense security strategies. To meet the application demands of weapon systems for novel energetic materials characterized by high-energy, high-efficiency, high-safety, and precisely controllable energy output, developing new energetic material technologies that harmonize energy performance with safety becomes imperative. This advancement will promote the evolution of weapon systems towards informatization and intelligence. Micro-nano manufacturing technology, a frontier manufacturing technology that countries are keen to develop, has seen significant applications in fields such as semiconductors, new energy, and new materials. Based on relevant research both domestically and internationally, the article reviews the latest research progress in the application of advanced micro-nano manufacturing technologies, represented by physical vapor deposition, chemical vapor deposition, atomic layer deposition, and plasma technology, in the field of novel energetic materials. Initially, the principles and characteristics of various advanced micro-nano manufacturing technologies are introduced. The technical advantages in precisely controlling the size, morphology, composition, and structure of novel energetic materials are analyzed, and the applications in the controlled preparation and surface modification of novel energetic materials are focused on. Finally, the paper discusses the challenges faced by typical micro-nano manufacturing technologies in the current field of novel energetic materials and outlines future development directions.
|
|
Published: 25 November 2025
Online: 2025-11-14
|
|
|
|
|
1 Kuang J J, Luo N N, Zhang J Y, et al. Laser & Optoelectronics Progress, 2022, 59(11), 136 (in Chinese). 匡珺洁, 罗宁宁, 张静雅, 等. 激光与光电子学进展, 2022, 59(11), 136. 2 Kwok K S, Zuo Y, Choi S J, et al. Nano Letters, 2023, 23(16), 7477. 3 Chen L, Xu J H, Luo X C, et al. Nanotechnology Reviews, 2023, 12(1), 0105. 4 Valentinčič J. Micromachines, 2022, 13(12), 2058. 5 Jiang Z D. In:The 9th Congress of the Shaanxi Mechanical Engineering Society. Xi’an, China, 2009, pp.13 (in Chinese). 蒋庄德. 陕西省机械工程学会第九次代表大会会议论文集. 西安, 2009, pp.13. 6 Qin L J, Gong T, Yan N, et al. Chinese Journal of Explosives & Propellants, 2019, 42(5), 425 (in Chinese). 秦利军, 龚婷, 闫宁, 等. 火炸药学报, 2019, 42(5), 425. 7 Qin L J, Gong T, Hao H X, et al. Chemical Journal of Chinese Universities, 2015, 36(3), 420 (in Chinese). 秦利军, 龚婷, 郝海霞, 等. 高等学校化学学报, 2015, 36(3), 420. 8 Qu C X, Li J L, Ding K W, et al. Molecules, 2024, 29(2), 504. 9 Liu X W, Hu Y, Chen B W, et al. Applied Surface Science, 2022, 577, 150643. 10 Ekmekcioglu M, Erdogan N, Astarlioglu A T, et al. Vacuum, 2021, 187, 110100. 11 Aslanidis E, Sarigiannidis S, Skotadis E, et al. Materials, 2024, 17(7), 1522. 12 Meysami A, Najafabadi R A, Yosefnejad T, et al. Surface Engineering and Applied Electrochemistry, 2024, 60(1), 58. 13 Khan S B, Irfan S, Zhang Z J. Journal of Materials Research and Technology, 2024, 31, 1616. 14 Mariya V, Fabio B, Walter G, et al. Materials, 2023, 16(14), 4919. 15 Wang Y P. Preparation and performance study of Al-based energy-containing films. Master's Thesis, North University of China, China, 2023 (in Chinese). 王云鹏. Al基含能薄膜制备及性能研究. 硕士学位论文, 中北大学, 2023. 16 Ji X G. High insensitive energetic ignition device based on Al/CuO thin film. Master's Thesis, North University of China, China, 2023 (in Chinese). 冀小刚. 基于Al/CuO薄膜的高钝感含能点火器件研究. 硕士学位论文, 中北大学, 2023. 17 Tai Y. Fabrication and properties of energetic semiconductor bridge based on Al/MoO3 multilayer films. Master's Thesis, Nanjing University of Science and Technology, China, 2019 (in Chinese). 太玉. 基于Al/MoO3多层薄膜的含能半导体桥制备及性能研究. 硕士学位论文, 南京理工大学, 2019. 18 Li M G, Du Z W, Liao H. Vacuum, 2013, 50(6), 23 (in Chinese). 李茂果, 杜自卫, 廖宏. 真空, 2013, 50(6), 23. 19 Blobaum J K, Reiss E M, Plitzko M J, et al. Journal of Applied Physics, 2003, 94(5), 2915. 20 Zhang K L, Rossi C, Rodriguez A A G, et al. Applied Physics Letters, 2007, 91(11), 113117. 21 Zhang K L, Rossi C, Alphonse P, et al. Applied Physics A:Materials Science & Processing, 2009, 94(4), 957. 22 Petrantoni M, Rossi C, ConéDéra V, et al. Journal of Physics and Che-mistry of Solids, 2009, 71(2), 80. 23 Ohkura Y, Liu S Y, Rao P M, et al. Proceedings of the Combustion Institute, 2010, 33(2), 1909. 24 Sun X, Zhang F, Wang Y L, et al. Initiators & Pyrotechnics, 2014(1), 12 (in Chinese). 孙星, 张方, 王燕兰, 等. 火工品, 2014(1), 12. 25 Hoss J D, Knepper R, Hotchkiss J P, et al. Journal of Colloid and Interface Science, 2016, 473, 28. 26 O’grady C, Knepper R, Marquez M, et al. Propellants, Explosives, Pyrotechnics, 2019, 44(5), 572. 27 Olles D J, Wixom R R, Knepper R, et al. Applied Physics Letters, 2019, 114(21), 214102. 28 Peguero J C, Forrest E C, Knepper R, et al. Propellants, Explosives, Pyrotechnics, 2021, 46(1), 39. 29 Forrest E C, Knepper P, Brumbach M T, et al. ACS Applied Materials & Interfaces, 2021, 13(1), 1670. 30 Dong N F. Preparation and properties study of reactive aluminum-copper oxide membrane. Master's Thesis, Nanjing University of Science and Technology, China, 2008 (in Chinese). 董能发. 铝-氧化铜可反应性膜的制备与性能研究. 硕士学位论文, 南京理工大学, 2008. 31 Zhu P, Shen R Q, Ye Y H, et al. Chinese Journal of Energetic Materials, 2010, 18(4), 427 (in Chinese). 朱朋, 沈瑞琪, 叶迎华, 等. 含能材料, 2010, 18(4), 427. 32 Yang Y. Preparation and study on electrical and explosive characteristics of Al/CuO multilayer energetic bridge membrane. Master's Thesis, Nanjing University of Science and Technology, China, 2010 (in Chinese). 杨洋. Al/CuO多层含能桥膜的制备与电爆特性研究. 硕士学位论文, 南京理工大学, 2010. 33 Hu Y, Ye Y H, Shen R Q, et al. Chinese Journal of Energetic Materials, 2010, 18(3), 339 (in Chinese). 胡艳, 叶迎华, 沈瑞琪, 等. 含能材料, 2010, 18(3), 339. 34 Fu S, Zhu P, Ye Y H, et al. Journal of Functional Materials, 2013, 44(15), 2213 (in Chinese). 付帅, 朱朋, 叶迎华, 等. 功能材料, 2013, 44(15), 2213. 35 Forrest E C, Knepper P, Brumbach M T, et al. Journal of Applied Physics, 2017, 121(3), 034503. 36 Zhang K L, Rossi C, Petrantoni M, et al. Journal of Microelectromechanical Systems, 2008, 17(4), 832. 37 Zhu P, Shen R Q, Ye Y H, et al. Journal of Applied Physics, 2011, 110(7), 074513. 38 Ni D B, Yu G Q, Shi S N, et al. Initiators & Pyrotechnics, 2018(1), 28 (in Chinese). 倪德彬, 于国强, 史胜楠, 等. 火工品, 2018(1), 28. 39 Ni D B, Yu G Q, Shi S N, et al. Chinese Journal of Energetic Materials, 2019, 27(2), 149 (in Chinese). 倪德彬, 于国强, 史胜楠, 等. 含能材料, 2019, 27(2), 149. 40 Fu S. Electrical initiation mechanism of chemical reaction in reactive multilayer films. Ph. D. Thesis, Nanjing University of Science and Technology, China, 2020 (in Chinese). 付帅. 多层含能复合薄膜的电激发能量释放机理研究. 博士学位论文, 南京理工大学, 2020. 41 Wang L K. Research on MEMS fuze detonation transmission system based on Al/CuO converter. Master's Thesis, Shenyang Ligong University, China, 2022 (in Chinese). 王罗凯. 基于Al/CuO换能元MEMS引信传爆系统研究. 硕士学位论文, 沈阳理工大学, 2022. 42 Kinsey A H, Slusarski K, Sosa S, et al. ACS Applied Materials & Interfaces, 2017, 9 (26), 22026. 43 Zapata J, Nicollet A, Julien B, et al. Combustion and Flame, 2019, 205, 389. 44 Shi A, Zhang W, Shen R. Journal of Physics:Conference Series, 2021, 1721(1), 012003. 45 Sun L Z, Yuan G W, Gao L B, et al. Nature Reviews Methods Primers, 2021, 1(1), 5. 46 Bahri M, Gebre S H, Elaguech M A, et al. Coordination Chemistry Reviews, 2023, 475, 214910. 47 Aras G, Yilmaz A, Tasdelen H G, et al. Materials Science in Semiconductor Processing, 2022, 148, 106829. 48 Miao M Y, Liu T, Bai J Y, et al. Journal of Membrane Science, 2022, 648, 120357. 49 Aper T M, Yam F K, Beh K. Materials Chemistry and Physics, 2022, 275, 125244. 50 Rooney D, Negrotti D, Byassee T, et al. Journal of the Electrochemical Society, 2019, 137(4), 1162. 51 Youn Y H, Lee S J, Choi G R, et al. Materials Science & Engineering C, 2019, 100, 949. 52 Chen L L. High-throughput controlled growth of waferscale MoS2 with strictly monolayers. Master's Thesis, Hebei University of Science & Technology, China, 2022 (in Chinese). 陈立灵. 晶圆级严格单层MoS2的可控批量制备. 硕士学位论文, 河北科技大学, 2022. 53 Yousef S, Mohamed A. Journal of Mechanical Science and Technology, 2016, 30(11), 5135. 54 Sung J, Shin M, Deshmukh P, et al. Journal of Alloys and Compounds, 2018, 767, 924. 55 Lyu Y D, Yu X F, Yao B J, et al. Chinese Journal of Explosives & Propellants, 2021, 44(6), 811 (in Chinese). 吕英迪, 于宪峰, 姚冰洁, 等. 火炸药学报, 2021, 44(6), 811. 56 Wang J, Qiao Z Q, Yang Y T, et al. Chemistry , 2016, 22(1), 279. 57 Fonseca J, Lu J L. ACS Catalysis, 2021, 11(12), 7018. 58 Qiao R H, Yu H L, Ben L B, et al. Chemical Engineering Journal, 2024, 486, 149877. 59 Masmitjà G, Estarlich P, Lopez G, et al. Journal of Science:Advanced Materials and Devices, 2024, 9(2), 100698. 60 Chen R, Cao K, Wen Y W, et al. International Journal of Extreme Ma-nufacturing, 2024, 6(2), 022003. 61 Yang H M, Yang X C, Meng F C, et al. Journal of Catalysis, 2024, 431, 115364. 62 Jin R, Wang H W, Lu J L. Chinese Science Bulletin, 2023, 68(27), 3670 (in Chinese). 金瑞, 王恒伟, 路军岭. 科学通报, 2023, 68(27), 3670. 63 Hu Y Y, Lu J, Feng H. RSC advances, 2021, 11(20), 11918. 64 Collins E, Pantoya M, Vijayasai A, et, al. Surface & Coatings Technology, 2013, 215, 476. 65 Kwon J, Ducéré J M, Alphonse P, et, al. ACS Applied Materials & Interfaces, 2013, 5(3), 605. 66 Li Y X, Meng K J, Tian M M, et al. Combustion and Flame, 2024, 265, 113447. 67 Chen Y J, Sun X L, Jiao Q J, et al. Chinese Journal of Explosives & Propellants, 2022, 45 (3), 355 (in Chinese). 陈永进, 孙晓乐, 焦清介, 等. 火炸药学报, 2022, 45 (3), 355. 68 Tang D Y. The preparation and combustion mechanism of iodine-based metastable intermixed composite. Master's Thesis, Northwestern Polytechnical University, China, 2020 (in Chinese). 唐得云. 碘基亚稳态分子间复合物的制备及其燃烧机理. 硕士学位论文, 西北工业大学, 2020. 69 Ferguson J D, Buechler K J, Weimer A W, et al. Powder Technology, 2005, 156(2), 154. 70 Marín L, Gao Yu-zhi, Vallet M, et al. Langmuir:The ACS Journal of Surfaces and Colloids, 2017, 33(41), 11086. 71 Qin L J, Gong T, Hao H X, et al. Journal of Nanoparticle Research:An Interdisciplinary Forum for Nanoscale Science and Technology, 2013, 15(12), 1. 72 Qin L J, Yan N, Li J G, et al. RSC Advances, 2017, 7(12), 7188. 73 Hu Y Y, Li D, Qin L J, et al. ACS Applied Nano Materials, 2024, 7, 22592. 74 Yan N, Qin L J, Hao H X, et al. Applied Surface Science, 2017, 408, 51. 75 Qin L J, Gong T, Li J G, et al. Journal of Hazardous Materials, 2019, 378, 120655. 76 Qin L J, Yan N, Hao H X, et al. Applied Surface Science, 2018, 436, 548. 77 Chen R, Duan C L, Liu X, et al. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 2017, 35(3), 03E111. 78 Duan C L. Surface modification of nanoparticles via atomie layer deposition and its applicationss. Ph. D. Thesis, Huazhong University of Science and Technology, China, 2017 (in Chinese). 段晨龙. 基于原子层沉积的微纳米颗粒表面改性方法研究及其应用. 博士学位论文, 华中科技大学, 2017. 79 Shao H C. Design of low temperature atomic layer deposition equipment and study on hygroscopic stabilization of aluminum trihydride particles. Master's Thesis, Huazhong University of Science and Technology, China, 2023 (in Chinese). 邵华晨. 低温原子层沉积设备的设计及三氢化铝颗粒的吸湿稳定化研究. 硕士学位论文, 华中科技大学, 2023. 80 Chen R, Qu K, Li J W, et al. ACS Applied Nano Materials, 2018, 1(10), 5500. 81 Gong T, Qin L J, Yan R, et al. Journal of Inorganic Materials, 2014, 29(8), 869 (in Chinese). 龚婷, 秦利军, 严蕊, 等. 无机材料学报, 2014, 29(8), 869. 82 Agarwal P P K, Matsoukas T. ACS Applied materials & Interfaces, 2022, 14(30), 35255. 83 Hou Z Y, Tan J, Yeung K W K, et al. Surfaces and Interfaces, 2024, 48, 104249. 84 Wang J, Zhang J H, Shangguan Y Y, et al. Environmental Pollution, 2024, 347, 123744. 85 Liu F, Zhang L H, Zhang Z, et al. Dalton Transactions, 2024, 53(13), 5749. 86 Ahmadi K, Qaderi F, Rahmaninejad M S, et al. Geoenergy Science and Engineering, 2024, 238, 212882. 87 Hou D Y, Hu J, Meng F M, et al. Nonferrous Metallurgical Equipment, 2023, 37(1), 36 (in Chinese). 侯栋宇, 胡觉, 孟凡明, 等. 有色设备, 2023, 37(1), 36. 88 Wu C C, Miller K K, Walck S D, et al. MRS Advances, 2019, 4(27), 1589. 89 Miller K K, Gottfried L J, Walck D S, et al. Combustion and Flame, 2019, 206, 211. 90 Miller K K, Shancita I, Bhattacharia S K, et al. Materials & Design, 2021, 210, 110. 91 Yang C H, Zhang Y P, Chen P, et al. Journal of Solid Rocket Technology, 2017, 40(1), 76 (in Chinese). 杨春辉, 张燕平, 陈攀, 等. 固体火箭技术, 2017, 40(1), 76. 92 Zhang S Y, Zhang X, Peng H R, et al. Thermal Spray Technology, 2022, 14(3), 23(in Chinese). 张思源, 张鑫, 彭浩然, 等. 喷涂技术, 2022, 14(3), 23. 93 Agarwal P P K, Jensen D, Chen Chien-hua, et al. ACS Applied Materials & Interfaces, 2021, 13(5), 6844. 94 Agarwal P P K, Matsoukas T. Nano Letters, 2023, 23(12), 5541. 95 Shahravan A, Desai T, Matsoukas T. ACS Applied Materials & Interfaces, 2014, 6(10), 7942. 96 Flannery M, Desai G T, Matsoukas T, et al. Journal of Nanomaterials, 2015, 2015, 1. |
|
|
|