| METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
| Structure and Properties of Interstitial Atom-doped MgAlLiSbAg Lightweight High-entropy Alloys Based on First-principles Study |
| WU Huilin1, ZHANG Yufei1, DONG Quan1, ZHANG Jing1,2,*
|
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China 2 National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China |
|
|
|
|
Abstract The effects of C and O interstitial atoms on the phase stability and mechanical properties of the equimolar ratio MgAlLiSbAg lightweight high-entropy alloy were investigated using special quasi-random structure modeling and first-principles calculations. The results show that MgAlLiSbAg tends to form stable BCC solid solution structure. Doping of O atoms at a higher concentration (4.76%, atomic fraction) helps to maintain the BCC structure stability, while doping of C atoms at a higher concentration or O atoms at a lower concentration (2.44%) will induce phase transformation from BCC structure to FCC structure. Doping with C or lower concentrations of O decrease the strength and ductility of the MgAlLiSbAg HEA, while the strength and plasticity of the alloy can be synergistically improved by doping higher concentrations of O atoms in BCC structure.
|
|
Published: 25 November 2025
Online: 2025-11-14
|
|
|
|
|
1 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299. 2 Huang D, Zhuang Y. Journal of Materials Science & Technology, 2022, 108(13), 125. 3 Muangtong P, Rodchanarowan A, Chaysuwan D, et al. Corrosion Science, 2020, 172, 108740. 4 Wu Q, Wang Z, He F, et al. Journal of Materials Science & Technology, 2022, 128, 71. 5 Miracle D B, Senkov O N. Acta Materialia, 2017, 122, 448. 6 Jia Y f, Wang G, Jia Y D, et al. Materials Reports, 2020, 34(17), 17003(in Chinese). 贾岳飞, 王刚, 贾延东, 等. 材料导报, 2020, 34(17), 17003. 7 Hou C H, ZHou N, Liu Z Y, et al. Materials Research and Application, 2022, 16(6), 959(in Chinese). 侯成浩, 周楠, 刘贞阳, 等. 材料研究与应用, 2022, 16(6), 959. 8 Li M, Bo Y C, Zhang J, et al. Materials Reports, 2020, 34(21), 21125(in Chinese). 李萌, 杨成博, 张静, 等. 材料导报, 2020, 34(21), 21125. 9 Li Z X, Zhu Y Y, Cheng X, et al. Journal of Materials Engineering, 2024, 52(1), 137(in Chinese). 李子兴, 朱言言, 程序, 等. 材料工程, 2024. 52(1), 137. 10 Svoboda J, Ecker W, Razumovskiy V I, et al. Progress in Materials Science, 2019, 101, 172. 11 Wang Z, Baker I, Cai Z, et al. Acta Materialia, 2016, 120, 228. 12 Chen L B, Wei R, Tang K, et al. Materials Science and Engineering:A, 2018, 716, 150. 13 Guo L, Ou X, Ni S, et al. Materials Science and Engineering:A, 2019, 746, 356. 14 Lei Z, Liu X, Wu Y, et al. Nature, 2018, 563(7732), 546. 15 Chen Y, Li Y, Cheng X, et al. Materials Letters, 2018, 228, 145. 16 Gong J, Li Y, Song X, et al. Vacuum, 2024, 219, 112754. 17 Dong Q, Li M, Liu X, et al. Intermetallics, 2024, 164, 108089. 18 Jeong I S, Lee J H. Materials & Design, 2023, 227, 111709. 19 Hashimoto H, Isobe S, Hashimoto N, et al. Journal of Alloys and Metallurgical Systems, 2023, 4, 100037. 20 Sorkin V, Yu Z G, Chen S, et al. Scientific Reports, 2023, 13(1), 22549. 21 Li M. Study on microstructure and properties of AlLiMgScTi system lightweight high entropy alloys prepared by mechanical alloying. Master's Thesis, Chongqing University, China, 2020(in Chinese). 李萌. 机械合金化AlLiMgScTi 系轻质高熵合金 组织与性能的研究. 硕士学位论文, 重庆大学, 2020. 22 Zunger A, Wei S H, Ferreira L, et al. Physical Review Letters, 1990, 65(3), 353. 23 Van D W A, Tiwary P, De J M, et al. Calphad, 2013, 42, 13. 24 Kresse G, Furthmüller J. Physical Review B, 1996, 54(16), 11169. 25 Kresse G, Joubert D. Physical Review B, 1999, 59(3), 1758. 26 Perdew J P, Burke K, Ernzerhof M. Physical Review Letters, 1996, 77(18), 3865. 27 Huang Z, Liu G, Zhang B, et al. Physics Letters A, 2020, 384(33), 126797. 28 Li W, Gao Q, Ren J, et al. Journal of Materials Research and Technology, 2024, 29, 376. 29 Huang S, Li X, Huang H, et al. Materials Chemistry and Physics, 2018, 210, 37. 30 Nong Z, Zhu J, Zhao R. Intermetallics, 2017, 86, 134. 31 Zhou L, Su K, Wang Y, et al. Journal of Alloys and Compounds, 2014, 596, 63. 32 Jiang D Y, Ouyang C Y, Liu S Q. Fusion Engineering and Design, 2016, 106, 34. 33 Li X, Tu X Q, Liu B Q, et al. Journal of Alloys and Compounds, 2017, 706, 260. 34 Fadila B, Ameri M, Bensaid D, et al. Journal of Magnetism and Magnetic Materials, 2018, 448, 208. 35 Gaillac R, Pullumbi P, Coudert F X. Journal of Physics:Condensed Matter, 2016, 28(27), 275201. 36 Hu C, Zhang J, Zhang Y, et al. Materials & Design, 2023, 225, 111571. 37 Shang J X, Yu T B. Acta Physica Sinica, 2009, 58(2), 1179(in Chinese). 尚家香, 于潭波. 物理学报, 2009, 58(2), 1179. 38 Liu C, Cui J, Cheng Z, et al. Advanced Materials, 2023, 35(13), 2209941. 39 Zhang S, Wang G. Materials Today Communications, 2022, 32, 104059. 40 Sunmonu R S, Akinlami J O, Dare E O, et al. Computational Condensed Matter, 2019, 21, e00412. 41 Tian F, Delczeg L, Chen N, et al. Physical Review B, 2013, 88(8), 085128. 42 Hou M H. Experimental and first-principles study on the strength and ductility of O/Si solid solution strengthened Ti alloys. Master's Thesis, Xi’an University of Science and Technology, China, 2023(in Chinese). 候鸣浩. O/Si固溶对Ti合金强塑性影响的实验和第一性原理研究. 硕士学位论文, 西安理工大学, 2023. 43 Hu J, Zhang J, Xiao H, et al. Journal of Alloys and Compounds, 2021, 879, 160482. 44 Wen S M, Yao S W, Zhao C W, et al. Chinese Journal of Computational Physics, 2020, 37(1), 119(in Chinese). 温淑敏, 姚世伟, 赵春旺, 等. 计算物理, 2020, 37(1), 119. 45 Baker, Thomas A, Friend, et al. Journal of the American Chemical Society, 2009, 131(12), 4551. |
|
|
|