METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Continuous Physical Vapor Deposition of Steel Strip Coating: Research Progress and Current Applications |
ZHAO Xingyuan1, LIU Xin1, LIU Qiuyuan1, QIU Xiaopan2, ZHANG Ziyue1,3, JIANG Sheming1, ZHANG Qifu1,*
|
1 National Engineering Laboratory of Advanced Coating Technology for Metals, Gangyan Engineering Design Co., Ltd., Central Iron & Steel Research Institute, Beijing 100081, China 2 State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China 3 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China |
|
|
Abstract The global consensus on "carbon peak and carbon neutrality" has intensified focus on the new generation of high-strength steel, pivotal in advancing energy conservation and emission reduction in the steel industry and automotive lightweight strategies. Traditional coating methods like electro-galvanized zinc are struggling to meet surface protection demands due to hydrogen embrittlement risks, stringent environmental regulations, and the poor platability of hot-dip galvanizing. Physical Vapor Deposition technology, leveraging vacuum coating, has adeptly resolved these issues in electroplating and hot-dip galvanizing for new generation high-strength steel. PVD's exceptional surface quality, robust adhesion, diverse coating material options, and environmental advantages mark it as a crucial advancement in next-generation surface engineering technologies. This paper reviews the application and development prospects of PVD in replacing traditional corrosion-resistant coating technologies for strip steel (such as electroplating and hot-dip galvanizing), with a particular focus on the thermal evaporation method of PVD, the development history of continuous PVD coating for strip steel, research progress, and its current status in industrial applications. Finally, the review underscores the agenda for future research directions.
|
Published: 25 January 2025
Online: 2025-01-21
|
|
|
|
1 Kuziak R, Kawalla R, Waengler S. Archives of Civil and Mechanical Engineering, 2008, 8(2), 103. 2 Taub A, De Moor E, Luo A, et al. Annual Review of Materials Research, 2019, 49, 327. 3 Yang Y, Xia X. High-tech and industrialization, 2021, 27(12),16(in Chinese). 杨洋, 夏雪.高科技与产业化, 2021, 27(12),16. 4 Ryan M P, Williams D E, Chater R J, et al. Nature, 2002, 415(6873), 770. 5 Shibli S M A, Meena B N, Remya R. Surface and Coatings Technology, 2015, 262, 210. 6 Sajjadnejad M, Mozafari A, Omidvar H, et al. Applied Surface Science, 2014, 300, 1. 7 Wright D, Gage N, Wilson B A. Plating and Surface Finishing, 1994, 81(7), 18. 8 Kanani N. In: Electroplating, basic principles, processes and practice. Elsevier, 2004. 9 Jia H X, Zhang X W, Xu J P, et al. Metals, 2019, 9(7), 798. 10 Sugawara N. Metal Finishing, 1997, 3(95), 92. 11 Yasakau K A, Giner I, Vree C, et al. Applied Surface Science, 2016, 389, 144. 12 Bellhouse E M, McDermid J R. Metallurgical and Materials Transaction A, 2011, 42(9), 2753. 13 Zhang C, Yanlin H, Weisen Z, et al. Coatings, 2020, 10(12), 1265. 14 Quinto D T. Fall Bulletin, 2007, 17, 22. 15 Srivatsa R A, McAvoy T D, Johnson L D, et al. Surface Engineering, 2013, 11(1), 75. 16 Knotek O, Löffler F, Krámer G. Surface and Coatings Technology, 1993, 59(1-3), 14. 17 Navinšek B, Panjan P, Urankar I, et al. Surface and Coatings Technology, 2001, 142, 1148. 18 Hoche H, Pusch C, Oechsner M. Surface and Coatings Technology, 2019, 376, 74. 19 Navinšek B, Panjan P, Milošev I. Surface and Coatings Technology, 1997, 97(1-3), 182. 20 Mattox D M. Handbook of physical vapor deposition (PVD) processing, Second Edition, Westwood, Noyes Publications, 1998. 21 Liu X, Qiu X P, Jiang S M, et al. Materials Protection, 2019, 52(8), 133 (in Chinese). 刘昕, 邱肖盼, 江社明, 等.材料保护, 2019, 52(8), 133. 22 Mezher S J, Kadhim K J, Abdulmunem O M, et al. Vacuum, 2020, 173, 109. 23 Dai Z R, Pan Z W, Wang Z L. Advanced Functional Materials, 2003, 13(1), 9. 24 Wang X, Wang X, Wang D, et al. Journal of Materials Science & Technology, 2018, 34(9), 1558. 25 Kuzmichev A, Tsybulsky L, Grundas S, Advances in Induction and Microwave Heating of Mineral and Organic Materials, BoD–Books on Demand, 2011. 26 Savov L, Janke D. ISIJ International, 2000, 40(2), 95. 27 Kalashami A G, DiGiovanni C, Razmpoosh M H, et al. Metallurgical and Materials Transactions A, 2020, 51(5), 2180. 28 Guo J, Jia J, Liu Y, et al. Metallurgical and Materials Transactions B, 2000, 31, 837. 29 Qiu X P. Deposition process and mechanism of zinc-magnesium alloy coa-ting prepared by vacuum evaporation. Ph.D.Thesis, Central Iron & Steel Research Institute, China, 2021(in Chinese)。 邱肖盼.真空蒸发制备锌镁合金镀层的沉积工艺与机理研究.博士学位论文,钢铁研究总院,2021. 30 Schuhmacher B, Schwerdt C, Seyfert U, et al. Surface and Coatings Technology, 2003, 163, 703. 31 La J H, Bae K T, Lee S Y, et al. Journal of Mechanical Science and Technology, 2016, 30, 4417. 32 Kim T Y, Goodenough M. Corrosion Science and Technology, 2011, 10(6), 194. 33 Huang H H, Liu Y S, Chen Y M, et al. Surface and Coatings Technology, 2006, 200(10), 3309. 34 Myburg G, Auret F D. Journal of Applied Physics, 1992, 71(12), 6172. 35 Al-Kuhaili M F, Durrani S M A, Khawaja E E. Journal of Physics D, Applied Physics, 2004, 37(8), 1254. 36 Schuhmacher B, Müschenborn W, Stratmann M, et al. Advanced Engineering Materials, 2001, 3(9), 681. 37 Marder A, Goodwin F. The metallurgy of zinc coated steel, Netherlands, Elsevier Science, 2023. 38 Schiller S, Beister G, Neumann M, et al. Thin Solid Films, 1982, 96(3), 199. 39 Maeda M, Ito T, Aiko T, et al. SAE Transactions, 1986, 95(2), 172. 40 Maeda M, Umeda S, Tsukiji N, et al. SAE Transactions, 1986, 95(2), 179. 41 Kawafuku J, Katoh J, Toyama M, et al. Tetsu-to-Hagané, 1991, 77(7), 995. 42 Baptiste L, van Landschoot N, Gleijm G, et al. Surface and Coatings Technology, 2007, 202(4-7), 1189. 43 Jeong U, Nam G H, Eom M J, et al. The Korean Institute of Surface Engineering, 2012, 05, 277. 44 Luo Y. Journal of Engineering Studies, 2018, 10(1),49(in Chinese). 罗晔.工程研究-跨学科视野中的工程, 2018, 10(1), 49. 45 Schmitz B, Colin R, Economopoulos M. Revue de Métallurgie, 2000, 97(7-8), 971. 46 Schmitz B. Steel Research, 2001, 72(11-12), 522. 47 Chaleix D, Allely C, Silberberg E, et al. EP patent, WO 2019/ 043472, 2019. 48 Pesci C, Chaleix D, Silberberg E, et al. In: 5th International Conference on Steels in Cars and Trucks. Amsterdam-Schiphol, The Netherlands, 2017, pp.275. 49 Chaleix D, Eric J, Cécile P, et al. In: Proceedings of Galvatech2021. Online meeting, 2021, pp.1134. 50 Prosek T, Persson D, Stoulil J, et al. Corrosion Science, 2014, 86, 231. 51 Volovitch P, Allely C, Ogle K. Corrosion Science, 2009, 51(6), 1251. 52 Rashmi S, Elias L, Hegde A C. Engineering Science and Technology, 2017, 20(3), 1227. 53 Lee J W, Park B R, Oh S Y, et al. Corrosion Science, 2019, 160, 108170. 54 Chakarova V, Boiadjieva-Scherzer T, Kovacheva D, et al. Corrosion Science, 2018, 140, 73. 55 Ueda K, Takahashi A, Kubo Y. In: Galvatech 2011, 8th International Conference on Zinc and Zinc Alloy Coated Steel Sheet. Genoa, Italy, 2011, pp.54. 56 Guzman L, Wolf G K, Davies G M. Surface and Coatings Technology, 2003, 174, 665. 57 Shimogori K, Satoh H, Toyama M, et al. U. S. patent, US5002837A, 1991. 58 La J H, Lee S Y, Hong S J. Surface & Coatings Technology, 2014, 259, 56. 59 Song M G, Kim H K, Lee S Y. ISIJ International, 2019, 59(6), 1113. 60 Hayashi H, Nakagawa T. Journal of Materials Processing Technology, 1994, 46(3-4), 455. 61 Ye M, Delplancke J L, Berton G, et al. Surface & Coatings Technology, 1998, 105(1-2), 184. 62 Lundgren A H. SAE Transactions, 1989, 98(5), 613. 63 Sabooni S, Galinmoghaddam E, Westerwaal R J, et al. WIT Transactions on Engineering Sciences, 2019, 124, 63. 64 Prosek T, Nazarov A, Bexell U, et al. Corrosion Science, 2008, 50(8), 2216. 65 Sullivan J, Mehraban S, Elvins J. Corrosion Science, 2011, 53(6), 2208. 66 Park J H, Ko K P, Hagio T, et al. Corrosion Science, 2022, 202, 110330. 67 Bolton R, Dunlop T, Sullivan J, et al. Journal of the Electrochemical Society, 2019, 166(11), 3305. 68 Wint N, Cooze N, Searle J R, et al. Journal of the Electrochemical Society, 2019, 166(11), 3147. 69 Osório W R, Freire C M, Garcia A. Materials Science and Engineering A, 2005, 402(1-2), 22. 70 Kim H K, Lee S H, Lee S Y. In: Proceedings of Galvatech2021. Online meeting, 2021, pp.108. 71 Hosking N C, Ström M A, Shipway P H, et al. Corrosion Science, 2007, 49(9), 3669. 72 Kawafuku J, Katoh J, Toyama M, et al. SAE Technical Paper, 1991, 912272. 73 Kim J S, Kim T C and Lee S K. In: Proceedings of Galvatech 2021. Online meeting, 2021, pp.9.
|
|
|
|