METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Effect of Rare Earth Elements on Microstructure and Properties of Interconnected Materials for Microelectronic Packaging |
SU Zilong1,2, YIN Limeng1,3,4,*, CHEN Yuhua5, ZHANG Hehe4, ZHANG Long4, ZHANG Liping4,6
|
1 School of Mechanical Engineering, Xinjiang University, Urumqi 830049, China 2 Beijing Zhongke New Micro Technology Development Co., Ltd., Beijing 100012, China 3 School of Mechanical Engineering, Chongqing Three Gorges University, Chongqing 404020, China 4 School of Mechanical and Intelligent Manufacturing, Chongqing University of Science & Technology, Chongqing 401331, China 5 School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China 6 School of Materials Science and Engineering, Beihang University, Beijing 100191, China |
|
|
Abstract With the development of lead-free microelectronic packaging, the comprehensive properties of packaging interconnected materials need to be further improved. It is an effective method to enhance the properties of materials by alloying modification, and rare earth materials play an important role in alloying modification. This paper focuses on the effects of rare earth elements on interconnected electronic packaging materials. The effects of rare earth elements on the microstructure and properties of Au, Cu, and Ag bonding wires, SnAgCu, SnZn and other lead-free solders, Sn-Ce coating, and Sn-RE alloy are summarized and discussed. Finally, the roles and shortcomings of rare earth elements in microelectronic packaging interconnection materials are summarized, and the research on adding trace rare earth elements in electronic packaging interconnect materials is prospected.
|
Published: 25 June 2025
Online: 2025-06-19
|
|
|
|
1 Lo J C, Jia B, Liu Z, et al. Soldering & Surface Mount Technology, 2008, 20(2), 30. 2 Gomes J, Mayer M, Lin B. Microelectronics Reliability, 2015, 55(3-4), 602. 3 Yu C M, Lai K K, Chen K S, et al. IEEE Access, 2020, 8, 106075. 4 Li S, Wang X, Liu Z, et al. Journal of Materials Science:Materials in Electronics, 2020, 31, 9076. 5 Jaffery H A, Sabri M F M, Said S M, et al. Journal of Alloys and Compounds, 2019, 810, 151925. 6 Satizabal L M, Costa D, Moraes P B, et al. Materials Chemistry and Physics, 2019, 223, 410. 7 Wu C, Yu D, Law C, et al. Materials Science and Engineering R:Reports, 2004, 44(1), 1. 8 Yang W, Du Z, Yu S, et al. Materials, 2019, 12(22), 3731. 9 Xiao D, Wang J, Ding D, et al. Journal of Alloys and Compounds, 2003, 352(1-2), 84. 10 Zhou H, Zhang Y, Cao J, et al. Micromachines, 2023, 14(2), 432. 11 Xue P, He P, Long W M, et al. Transactions of the China Welding Institution, 2021, 42(4), 1 (in Chinese). 薛鹏, 何鹏, 龙伟民, 等. 焊接学报, 2021, 42(4), 1. 12 Yue J, Xiao Y, Li Y, et al. Organic Electronics, 2017, 43, 121. 13 Manoharan S, Patel C, Mccluskey P. In:ASME 2017 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. California, 2017, pp.74286. 14 Zou Y S, Gan C L, Chung M H, et al. Journal of Materials Science:Materials in Electronics, 2021, 32(23), 27133. 15 Liang S, Huang F, Peng C, et al. Jorunal of Functional Materials, 2019, 50, 5048. 16 Chen X. Silicon, 2014, 7, 152. 17 Schneider-Ramelow M, Ehrhardt C. Microelectronics Reliability, 2016, 63, 336. 18 Chuang T H, Lin H J, Chuang C H, et al. Journal of Alloys and Compounds, 2014, 615, 891. 19 Xie Q, Long K, Lu D, et al. IEEE Transactions on Industrial Electronics, 2021, 69(11), 11807. 20 Xie S, Lin P, Yao Q. Journal of Physics:Conference Series, 2021, 1907(1), 012021. 21 März B, Graff A, Klengel R, et al. Microelectronics Reliability, 2014, 54(9-10), 2000. 22 Ning Y. Gold Bulletin, 2005, 38, 3. 23 Yang G X, Guo Y C, Kong J W, et al. Precious Metals, 2011, 32(1), 16 (in Chinese). 杨国祥, 郭迎春, 孔建稳, 等. 贵金属, 2011, 32(1), 16. 24 Li Y L, Wang Y G, Wu B Y. Journal of Materials and Metallurgy, 1999, 1(4), 296 (in Chinese). 李英龙, 王玉贵, 吴宝元. 材料与冶金学报, 1999, 1(4), 296. 25 Zhang G. New Technology & New Products of China, 2021(10), 70 (in Chinese). 张弓. 中国新技术新产品, 2021(10), 70. 26 曹军, 范俊玲, 李艳梅, 等. 中国专利, CN104278169A, 2013. 27 倪海霞. 中国专利, CN108149060A, 2018 28 房跃波, 郑志法, 郑康定. 中国专利, CN200610154485, 2007. 29 Yang F, Zhang X D, Fang F. IOP Conference Series:Materials Science and Engineering. 2022, 1249(1), 012057. 30 李细江. 中国专利, CN202010885508. X, 2022. 31 韩连恒, 王岩, 刘炳磊, 等. 中国专利, CN110718526A, 2020. 32 王娟, 曹凯, 刘实, 等. 中国专利, CN109473413A, 2019. 33 Chen C H, Chuang T H. Microelectronics Reliability, 2022, 137, 114786. 34 Hsueh H W, Hung F Y, Lui T S, et al. Microelectronics Reliability, 2014, 54(11), 2564. 35 徐云管, 李湘平, 彭庶瑶, 等. 中国专利, CN103779308A, 2014. 36 林良. 中国专利, CN102770468A, 2018. 37 Zhao M, Zhang L, Xiong M Y. Materials Reports, 2019, 33(8), 2467 (in Chinese). 赵猛, 张亮, 熊明月. 材料导报, 2019, 33(8), 2467. 38 Fan J L, Liu Z Y, Li Y W, et al. Materials Reports, 2018, 32(21), 3774 (in Chinese). 樊江磊, 刘占云, 李育文, 等. 材料导报, 2018, 32(21), 3774. 39 Chen Z G. Study on creep behavior of SnAgCuRE soldered joints. Ph. D. Thesis, Beijing University of Technology, China, 2003 (in Chinese). 陈志刚. SnAgCuRE钎焊接头蠕变行为的研究. 博士学位论文, 北京工业大学, 2003. 40 Zhang L, Xue S B, Gao L L, et al. Journal of Materials Science:Materials in Electronics, 2009, 20, 1193. 41 Zhang L, Xue S B, Gao L L, et al. Microelectronic Engineering, 2011, 88(9), 2848. 42 Zhang L, Xue S B, Zeng G, et al. Journal of the Chinese Rare Earth Society, 2009, 27(2), 246 (in Chinese). 张亮, 薛松柏, 曾广, 等. 中国稀土学报, 2009, 27(2), 246. 43 Zhao X Y, Zhao M Q, Cui X Q, et al. Transactions of Nonferrous Metals Society of China, 2007, 17(4), 805. 44 Zhang L, Xue S B, Gao L L, et al. Transactions of Nonferrous Metals Society of China, 2010, 20(3), 412. 45 Wang Y, Zhao X C, Liu Y, et al. Rare Metals, 2021, 40, 714. 46 Dudek M, Sidhu R, Chawla N, et al. Journal of Electronic Materials, 2006, 35, 2088. 47 Dudek M, Chawla N. Materials Characterization, 2008, 59(9), 1364. 48 Aamir M, Tolouei-Rad M, Din I U, et al. Soldering & Surface Mount Technology, 2019, 31(4), 250. 49 Gao L L, Xue S B, Zhang L, et al. Journal of Materials Science:Materials in Electronics, 2010, 21, 910. 50 Gao L L, Xue S B, Zhang L, et al. Journal of Materials Science:Materials in Electronics, 2010, 21, 643. 51 Liu M, Xian A. Science China Technological Sciences, 2011, 54, 1546. 52 Hao H, Xu G, Song Y, et al. Journal of Electronic Materials, 2012, 41, 184. 53 Liu M, Xian A P. Journal of Electronic Materials, 2009, 38, 2353. 54 Li Z, Mikula A, Qiao Z. Monatshefte für Chemie/Chemical Monthly, 2005, 136, 1835. 55 Lin H J, Chuang T H. Journal of Electronic Materials, 2010, 39, 200. 56 Lin H J, Chuang T H. Materials Letters, 2010, 64(4), 506. 57 Wang W. Preparation and research of lead-free solder Sn-Zn-xLa. Master’s Thesis, Fudan University, China, 2008 (in Chinese). 王炜. 无铅焊料Sn-Zn-xLa的制备及研究. 硕士学位论文, 复旦大学, 2008. 58 Zhou J. Investigation on low temperature Sn-Zn base lead-free alloys. Ph. D. Thesis, Southeast University, China, 2006 (in Chinese). 周健. 低熔点Sn-Zn系无铅焊料研究. 博士学位论文, 东南大学, 2006. 59 Chuang T H, Lin H J. Journal of Electronic Materials, 2009, 38, 420. 60 Chen W, Xue S, Journal of Materials Science:Materials in Electronics, 2010, 21, 719. 61 Wang H, Xue S, Zhao F, et al. Rare Metals, 2009, 28, 600. 62 Wang H, Xue S, Zhao F, et al. Journal of Materials Science:Materials in Electronics, 2010, 21, 111. 63 Xiao Z X. Effect of Pr on the microstructure and properties of Sn-9Zn lead-free solder. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, China, 2011 (in Chinese). 肖正香. 稀土Pr对Sn-9Zn无铅钎料组织和性能的影响. 硕士学位论文, 南京航空航天大学, 2011. 64 Xue P, Xue S B, Shen Y F, et al. Soldering & Surface Mount Technology, 2012, 24(4), 280. 65 Xue P, Xue S B, Shen Y F, et al. Transactions of the China Welding Institution, 2011, 32(8), 53 (in Chinese). 薛鹏, 薛松柏, 沈以赴, 等. 焊接学报, 2011, 32(8), 53. 66 Hu Y H, Xue S B, Wang H, et al. Journal of Materials Science:Materials in Electronics, 2011, 22, 481. 67 Dong W, Shi Y, Xia Z, et al. Journal of Electronic Materials, 2008, 37, 982. 68 Shiue Y Y, Chuang T H. Journal of Alloys and Compounds, 2010, 491(1-2), 610. 69 Liu X, Huang M, Wu C M L, et al. Journal of Materials Science:Materials in Electronics, 2010, 21, 1046. 70 Sharma A, Srivastava A K, Lee K, et al. Metals and Materials International, 2019, 25, 1027. 71 Wu C P. Influences of rare earth additions on the microstructure and interfacial reaction of SnBi solder alloys. Master’s Thesis, Chongqing University, China, 2011 (in Chinese). 吴翠平. 稀土元素的添加对SnBi系焊料合金微观组织及界面反应的影响. 硕士学位论文, 重庆大学, 2011. 72 Zhang L, Yang W, Feng J, et al. Journal of Materials Research and Technology, 2023, 26, 1062. 73 Zeng X, Liu Y, Zhang J, et al. Journal of Materials Science:Materials in Electronics, 2020, 31, 16437. 74 Yue F, Wei W, Lei Z, et al. Journal of Physics:Conference Series, 2023, 2478(4), 042009. 75 Liao C L. Foundry Technology, 2017, 38(11), 2734 (in Chinese). 廖春丽. 铸造技术, 2017, 38(11), 2734. 76 Hu L, Yu D K, Bu Y Z, et al. Transactions of the China Welding Institution, 2024, 45(4), 101 (in Chinese). 胡岭, 余丁坤, 卜永周, 等. 焊接学报, 2024, 45(4), 101. 77 Jagtap P, Kumar P. Journal of Electronic Materials, 2021, 50, 735. 78 Liao Y J. Materials Protection, 1986(6), 34 (in Chinese). 廖义佳. 材料保护, 1986(6), 34. 79 Shen Z L. Materials Protection, 1990, 23(7), 28 (in Chinese). 沈志龙. 材料保护, 1990, 23(7), 28. 80 Xu G Y. Surface Technology, 1993, 22(1), 19 (in Chinese). 许根元. 表面技术, 1993, 22(1), 19. 81 Yao S B, Chen B Y, Liu Z J, et al. Electroplating & Pollution Control, 1992, 12(6), 1 (in Chinese). 姚士冰, 陈秉彝, 刘赞今, 等. 电镀与环保, 1992, 12(6), 1. 82 Meng Z, Zheng K, Huang C, et al. Coatings, 2022, 12(2), 134. 83 Islam M A, Mou J R. Journal of Sol-Gel Science and Technology, 2020, 96, 304. 84 Yi P, Chen D, Li M, et al. Corrosion Science, 2023, 220, 111264. 85 Chuang T H, Lin H J, Chi C C. Journal of Electronic Materials, 2007, 36, 1697. 86 Chuang T H, Lin H J, Chi C C. Scripta Materialia, 2007, 56(1), 45. 87 Jiang B, Xian A P. Philosophical Magazine Letters, 2007, 87(9), 657. 88 Liu M, Xian A P. Journal of Alloys and Compounds, 2009, 486(1-2), 590. 89 Xian A P, Liu M. Journal of Materials Research, 2009, 24(9), 2775. 90 Li C F, Liu Z Q. Acta Materialia, 2013, 61(2), 589. 91 Dudek M, Chawla N. Acta Materialia, 2009, 57(15), 4588. 92 Shi H C, Xian A P. Journal of Electronic Materials, 2011, 40, 1962. 93 Hao H, He H, Lu Y. In:2014 15th International Conference on Electronic Packaging Technology (ICEPT). Chengdu, 2014, pp.1120. 94 Lindborg U. Acta Metallurgica, 1976, 24(2), 181. 95 Lee B Z, Lee D. Acta Materialia, 1998, 46(10), 3701. 96 Eshelby J. Physical Review, 1953, 91(3), 755. 97 Lebret J, Journal of Materials Research, 2003, 18(3), 585. 98 Kakeshita T, Shimizu K, Kawanaka R, et al. Journal of Materials Science, 1982, 17(9), 2560. 99 Fisher R, Darken L, Carroll K. Acta Metallurgica, 1954, 2(3), 368. 100 Sheng G T T, Hu C F, Choi W J, et al. Journal of Applied Physics, 2002, 92(1), 64. 101 Tu K N. Acta Metallurgica, 1973, 21(4), 347. 102 Tu K N. Physical Review B, 1994, 49(3), 2030. 103 Lau J H, Pan S H. Journal of Electronic Packaging, 2003, 125(4), 621. 104 Jiang B, Xian A P. Journal of Materials Science:Materials in Electronics, 2007, 18(5), 513. 105 Chuang T H, Chi C C. Journal of Alloys and Compounds, 2009, 480(2), 974. 106 Zhang L, Xiong D, Su Z, et al. Materials Today Communications, 2022, 33, 104301. |
|
|
|