METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Microstructure, Mechanical Properties and Corrosion Behavior of the GH4169/BNi-7 Brazed Joint |
ZHU Kaitao1, DONG Duo2,3,*, YANG Xiaohong4, ZHU Dongdong2, WANG Xiaohong3, MA Tengfei3
|
1 College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China 2 Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Taizhou 318000, Zhejiang, China 3 College of Mechanical Engineering, Quzhou University, Quzhou 324000, Zhejiang, China 4 Academician Expert Workstation & Key Laboratory of Crop Harvesting Equipment Technology of Zhejiang Province, Jinhua Polytechnic, Jinhua 321017, Zhejiang, China |
|
|
Abstract In this work, GH4169 alloy was brazed by BNi-7 filler foil. The brazed joint consists of three zones: diffusion affected zone (DAZ), athermal solidification zone (ASZ) and isothermal solidification zone (ISZ). ISZ is mainly composed of Ni-based solid solution; ASZ is composed of both γ(Ni)+Ni3P eutectic structure and Ni-Cr-P intermetallic compounds. The typical microstructure of the GH4169 alloy joint brazed at 980 ℃ is GH4169/γ(Ni)/γ(Ni)+Ni3P+Ni-Cr-P/γ(Ni)/GH4169. During the brazing process, the increasing of the brazing temperature was beneficial to the diffusion of elements, which should promote the volume fraction of Ni-based solid solution and decrease that of brittle phases, and then improved the shear strength of brazed joints. When the brazing temperature was 1 020 ℃, the highest shear strength (161.35 MPa) was obtained. The fracture mode of the joint was brittle fracture, and the fracture occurred in ASZ. The electrochemical tests of joints were conducted. ISZ acted as an anode and created noticeable corrosion trenches, and the substrate and ASZ were protected as cathodes. Compared with the base metal, the corrosion resistance and the stability of the passive film of the brazed joints were reduced. The increase of the brazing temperature led to a full diffusion of anti-corrosion elements such as Cr and Mo, and a more uniform microstructure of the joint, thus improving the corrosion resistance of the joint and the stability of the passive film.
|
Published: 25 December 2024
Online: 2024-12-20
|
|
Fund:National Natural Science Foundation of China (52071165). |
|
|
1 Zhao Y S, Zhang M, Dai J W, et al. Materials Reports, 2023, 37(6), 77 (in Chinese). 赵云松, 张迈, 戴建伟, 等. 材料导报, 2023, 37(6), 77. 2 Wang K, Zhang P, Yang W P, et al. Journal of Rocket Propulsion, 2023, 49(1), 12 (in Chinese). 王凯, 张鹏, 杨卫鹏, 等. 火箭推进, 2023, 49(1), 12. 3 Riedlsperger F, Wojcik T, Buzolin R, et al. Materials Characterization, 2023, 198, 112720. 4 Jiang H, Wang F, Dong J X. Journal of Materials Research and Technology, 2023, 23, 4860. 5 Zhao X B, Gu Y F, Lu J T, et al. Rare Metal Materials and Engineering, 2015, 44(3), 768 (in Chinese). 赵新宝, 谷月峰, 鲁金涛, 等. 稀有金属材料与工程, 2015, 44(3), 768. 6 Shi C X, Zhong Z Y. Acta Metallurgica Sinica, 2010, 46(11), 1281 (in Chinese). 师昌绪, 仲增墉. 金属学报, 2010, 46(11), 1281. 7 Yan G X, Bhowmik A, Nagarajan B, et al. Materials Science and Engineering: A, 2019, 766, 138267. 8 Zorc B, Kosec L. Revista de Metalurgia (Madrid), 2000, 36, 100. 9 Salmaliyan M, Shamanian M. Heat and Mass Transfer, 2019, 55, 2083. 10 Li H Y, Liu Y J, Zhao Z X, et al. Acta Aeronaut et Astronautica Sinica, 2022, 43(2), 625020 (in Chinese). 李昊岳, 刘永江, 赵振兴, 等. 航空学报, 2022, 43(2), 625020. 11 Tan C W. Research on laser welding-brazing characteristics of magne-sium/steel and its interface control with alloying elements. Ph. D. Thesis, Harbin Institute of Technology, China, 2014 (in Chinese). 檀财旺. 镁/钢激光熔钎焊接特性及界面合金调控技术研究. 博士学位论文, 哈尔滨工业大学, 2014. 12 Khan Z, Fida S, Nisar F, et al. Engineering Failure Analysis, 2016, 68, 197. 13 Zhang H Y, Xu W, Zhu T Y, et al. Engineering Failure Analysis, 2023, 146, 107150. 14 Lian Z J, Niu J, Xu D X, et al. Journal of Netshape Forming Engineering, 2020, 12(1), 60 (in Chinese). 廉张剑, 牛靖, 徐东晓, 等. 精密成形工程, 2020, 12(1), 60. 15 Pagotto J F, Montemor M F, Recio F J, et al. Journal of the Brazilian Chemical Society, 2015, 26(4), 667. 16 Andreatta F, Matesanz L, Akita A H, et al. Electrochimica Acta, 2009, 55, 551. 17 Benedetti A, Gambaro S, Valebza F, et al. Electrochimica Acta, 2018, 283, 155. 18 Yang L Y, Dong X P, Liu W, et al. Corrosion Science and Protection Technology, 2009, 21(1), 40 (in Chinese). 杨丽颖, 董小平, 柳伟, 等. 腐蚀科学与防护技术, 2009, 21(1), 40. 19 Qin Y Q, Jiang W X. Welding in the World, 2019, 63, 1469. 20 Tan J F, Wan M, Han W W, et al. Intermetallics, 2022, 141, 107438. 21 Liu S B, Shohji I, Kobayashi T, et al. Materials, 2021, 14(15), 4216. 22 Hu S P, Li W Q, Fu W, et al. Acta Aeronaut et Astronautica Sinica, 2021, 42(3), 423846 (in Chinese). 胡胜鹏, 李文强, 付伟, 等. 航空学报, 2021, 42(3), 423846. 23 Yan G X, Bhowmik A, Nagarajan B, et al. Applied Surface Science, 2019, 484, 1223. 24 Ghahferokhi A I, Kasiri-Asgarani M, Ebrahimi-Kahrizsangi R, et al. Journal of Materials Research and Technology, 2022, 21, 2178. 25 Pouranvari M, Ekrami A, Kokabi A H. Journal of Alloys and Compounds, 2013, 563, 143. 26 Binesh B, Gharehbagh A J. Journal of Materials Science & Technology, 2016, 32(11), 1137. 27 Doroudi A, Shamsipur A, Omidvar H, et al. Journal of Manufacturing Processes, 2019, 38, 235. 28 Otto J L, Penyaz M, Schmied K A, et al. Journal of Materials Research and Technology, 2020, 9(5), 10550. 29 Wu N, Li Y J, Wang J, et al. Journal of Materials Processing Technology, 2012, 212(4), 794. 30 Baharzadeh E, Shamanian M, Rafiei M, et al. Journal of Materials Processing Technology, 2019, 274, 116297. 31 Chen Z L, Chen G Q, Li J, et al. Hot Working Technology, 2008(5), 16 (in Chinese). 陈志林, 陈国强, 李军, 等. 热加工工艺, 2008(5), 16. 32 Guo S, Sun L B, Zheng Z, et al. Electrochimica Acta, 2021, 379, 138193. 33 Chen G L, Liu S S, Wu D T, et al. Materials Reports, 2023, 37(7), 168 (in Chinese). 赵冠琳, 刘树帅, 吴东亭, 等. 材料导报, 2023, 37(7), 168. 34 Dezfooli M S, Shamanian M, Golozar M A. Journal of Manufacturing Processes, 2021, 64, 464. 35 Wang X J, Li M Z, Wang B S, et al. Hot Working Technology, 2019, 48(22), 70 (in Chinese). 王希靖, 李梦泽, 王博士, 等. 热加工工艺, 2019, 48(22), 70. 36 Shi Y Z. Microstructures and corrosion-resistant properties of AlxCoCrFeNi high-entropy alloys. Ph. D. Thesis, University of Science and Technology Beijing, China, 2018 (in Chinese). 石芸竹. AlxCoCrFeNi系高熵合金微观组织与耐蚀性能研究. 博士学位论文, 北京科技大学, 2018. 37 Raj S, Biswas P. Journal of Manufacturing Processes, 2023, 95, 143. 38 Zhang J W, Wang W X, Huang Y P, et al. Transactions of the China Welding Institution, 2007, 28(2), 103 (in Chinese). 张俊旺, 王文先, 黄延平, 等. 焊接学报, 2007, 28(2), 103. 39 Choi K J, Yoo S C, Kim S, et al. Corrosion Science, 2019, 153, 138. 40 Chen X D, Yu W Y, Lu W J, et al. Transactions of the China Welding Institution, 1999(S1), 10 (in Chinese). 陈学定, 俞伟元, 路文江, 等. 焊接学报, 1999(S1), 10. |
|
|
|