| INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
| Research Status and Development Trends of Transport Materials for Offshore Wind to Hydrogen |
| QU Shaopeng1,*, ZHANG Haiqiang1, YANG Lujia1, LI Xin2, HE Dongyu3
|
1 College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China 2 State Power Investment Group Science and Technology Institute Co., Ltd., Beijing 102200, China 3 National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072, China |
|
|
|
|
Abstract Hydrogen energy, recognized as a green secondary energy, plays a crucial role in the global response to climate change. Offshore wind to hydrogen is one of the important ways for producing green hydrogen and has currently become one of the research hotspots globally. For large-scale industrial application of hydrogen energy, it is essential to develop transport materials for offshore wind to hydrogen, which not only need to meet the safety requirements for hydrogen environments, but also satisfy the reliability for complex marine conditions. Hydrogen transport materials for offshore wind to hydrogen are taken as the object in this work. The research challenges, failure forms and related mechanisms of hydrogen transport materials in offshore wind to hydrogen are summarized. Two typical transport modes of hydrogen production from offshore wind power, submarine pipeline transport and marine ship transport, are introduced. The current research status of the transport materials involved in two typical hydrogen transport methods, considering the different states of hydrogen energy, are sorted out respectively. Finally, the development trends of hydrogen transport materials for offshore wind to hydrogen are prospected from the aspects of material optimization and surface treatment.
|
|
Published: 25 January 2026
Online: 2026-01-27
|
|
|
|
|
1 Sun P Y, Jiang Z B, Chen Y G, et al. Scientia Sinica Technologica, 2025, 55(3), 423 (in Chinese). 孙朋元, 江志兵, 陈友淦, 等. 中国科学:技术科学, 2025, 55(3), 423. 2 Global Wind Energy Council. Global Wind Report 2022, 2022. 3 Energy Research Institute, NDRC, P. R. C, International Energy Agency. 中国风电发展路线图2050, 2011. 4 Mazza A, Bompard E, Chicco G. Renewable and Sustainable Energy Reviews, 2018, 92, 794. 5 国家能源局. https://www.nea.gov.cn/2022-03/23/c_1310525755.htm. 6 Xie H, Zhao Z Y, Wu Y F, et al. Nature, 2022, 612, 673. 7 Liu T, Zhao Z Y, Tang W B, et al. Nature Communications, 2024, 15, 5305. 8 Liu T, Lan C, Tang M, et al. Nature Communications, 2024, 15, 8874. 9 Zhang B F, Zhang C G, Yang O, et al. ACS Nano, 2022, 16(9), 15286. 10 Xian K. China Resources Comprehensive Utilization, 2023, 41(9), 166 (in Chinese). 宪凯. 中国资源综合利用, 2023, 41(9), 166. 11 Takahashi R, Kinoshita H, Murata T, et al. IEEE Transactions on Industrial Electronics, 2010, 57(2), 485. 12 De-Troya J J, Alvarez C, Fernandez-Garrido C, et al. International Journal of Hydrogen Energy, 2016, 41(4), 2853. 13 Cavo M, Gadducci E, Rattazzi D, et al. International Journal of Hydrogen Energy, 2021, 46(64), 32630. 14 Su X, Xu J H, Liang B L, et al. Journal of Energy Chemistry, 2016, 25(4), 553. 15 Wang Y H, Gao W G, Li K Z, et al. Chemistry, 2020, 6(2), 419. 16 Xu D, Wang Y Q, Ding M Y, et al. Chemistry, 2021, 7, 849. 17 Li Z L, Wang J J, Qu Y Z, et al. ACS Catalysis, 2017, 7(12), 8544. 18 Zheng J Y, Ma K, Ye S, et al. Pressure Vessel Technology, 2022, 39(3), 1 (in Chinese). 郑津洋, 马凯, 叶盛, 等. 压力容器, 2022, 39(3), 1. 19 Cheng Y F. Oil & Gas Storage and Transportation, 2023, 42(1), 1 (in Chinese). 程玉峰. 油气储运, 2023, 42(1), 1. 20 Zhou Q J, Qiao L J, Qi H B, et al. Journal of Non-Crystalline Solids, 2007, 353, 4011. 21 Ren X C, Shan G B, Chu W Y, et al. Chinese Science Bulletin, 2005, 50(17), 1962. 22 Laureys A, Depover T, Petrov R, et al. Materials Characterization, 2016, 112, 169. 23 Xing Y Y, Yang Z L, Yao X C, et al. International Journal of Pressure Vessels and Piping, 2022, 196, 104620. 24 Ferrin P, Kandoi S, Nilekar A U, et al. Surface Science, 2012, 606(7-8), 679. 25 Rusman N A A, Dahari M. International Journal of Hydrogen Energy, 2016, 41, 12108. 26 Zhao J W, Wang X G, Yang Q Q, et al. International Journal of Hydrogen Energy, 2022, 47(93), 39572. 27 Zhang D N, Ding N, Zhang Z, et al. Advances in New and Renewable Energy, 2022, 10(1), 15 (in Chinese). 张冬娜, 丁楠, 张兆, 等. 新能源进展, 2022, 10(1), 15. 28 Yan J Y, Cao G P. Macromolecules, 2023, 56(11), 3774. 29 Cazenave P, Jimenez K, Gao M, et al. Journal of Pipeline Science and Engineering, 2021, 1(1), 100. 30 Zheng J Y, Liu X X, Xu P, et al. International Journal of Hydrogen Energy, 2012, 37(1), 1048. 31 Sun Y H, Cheng Y F. Engineering Failure Analysis, 2022, 133, 105985. 32 Wasim M, Djukic M B. International Journal of Hydrogen Energy, 2020, 45(3), 2145. 33 Robertson I M, Sofronis P, Nagao A, et al. Metallurgical and Materials Transactions B, 2015, 46(3), 108. 34 Neeraj T, Srinivasan R, Li J. Acta Materialia, 2012, 60, 5160. 35 Qu S P, Zhao X Y, Xuan X Y. Materials Science and Technology, 2023, 31(6), 19 (in Chinese). 屈少鹏, 赵行娅, 轩星雨. 材料科学与工艺, 2023, 31(6), 19. 36 Sutcliffe E, Srinivasan R. Journal of Applied Physics, 1986, 60(9), 3315. 37 Morita K, Yamashita H, Yabuuchi N, et al. Progress in Organic Coa-tings, 2015, 78, 183. 38 Zhang S Y, Li S J, Luo X W, et al. Corrosion Science, 2000, 42, 2037. 39 Ronevich J A, D’Elia C R, Hill M R. Engineering Fracture Mechanics, 2018, 194, 42. 40 Guo J X, Yang J, Zhao Y Z, et al. International Journal of Hydrogen Energy, 2014, 39, 13926. 41 Widera B. Thermal Science and Engineering Progress, 2020, 16, 100460. 42 Franco B A, Baptista P, Neto R C, et al. Applied Energy, 2021, 286, 116553. 43 Faye O, Szpunar J, Eduok U. International Journal of Hydrogen Energy, 2022, 47, 13771. 44 PosHYdon. https://poshydon.com/en/home-en/. 45 Service R F. Science, 2018, 361(6398), 120. 46 Modisha P M, Ouma C N M, Garidzirai R, et al. Energy & Fuels, 2019, 33(4), 2778. 47 Chen Y F, Wang Z H, Liu R H, et al. Journal of Ocean Technology, 2024, 43(3), 107 (in Chinese). 陈严飞, 王志浩, 刘瑞昊, 等. 海洋技术学报, 2024, 43(3), 107. 48 Cao J W, Qin X F, Geng G, et al. Acta Petrolei Sinica(Petroleum Processing Section), 2021, 37(6), 1461 (in Chinese). 曹军文, 覃祥富, 耿嘎, 等. 石油学报(石油加工), 2021, 37(6), 1461. 49 Drexler E S, Amaro R L, Slifka A J, et al. Journal of Pressure Vessel Technology, 2018, 140, 061702. 50 Pu L, Yu H S, Dai M H, et al. Chinese Science Bulletin, 2022, 67(19), 2172 (in Chinese). 蒲亮, 余海帅, 代明昊, 等. 科学通报, 2022, 67(19), 2172. 51 Amaro R L, Drexler E S, Slifka A J. International Journal of Fatigue, 2014, 62, 249. 52 Meng B, Gu C H, Zhang L, et al. International Journal of Hydrogen Energy, 2017, 42(11), 7404. 53 Somerday B P, Sofronis P, Nibur K A, et al. Acta Materialia, 2013, 61(16), 6153. 54 Komoda R, Yamada K, Kubota M, et al. International Journal of Hydrogen Energy, 2019, 44(54), 29007. 55 Michler T, Yukhimchuk A A, Naumann J. Corrosion Science, 2008, 50(12), 3519. 56 Amaro R L, Rustagi N, Findley K O, et al. International Journal of Fatigue, 2014, 59, 262. 57 Shinko T, Henaff G, Halm D, et al. Metallurgical and Materials Tran-sactions A, 2020, 51, 4313. 58 Trautmann A, Mori G, Oberndorfer M, et al. Materials, 2020, 13, 3604. 59 Matsunaga H, Yoshikawa M, Kondo R, et al. International Journal of Hydrogen Energy, 2015, 40, 5739. 60 GB/T 15970. 1-2018. 金属和合金的腐蚀 应力腐蚀试验 第1部分:试验方法总则, 2018. 61 Qian S, Cheng Y F. Journal of Pipeline Science and Engineering, 2022, 2, 71. 62 Sun Y H, Cheng Y F. International Journal of Hydrogen Energy, 2021, 46(69), 34469. 63 Zhang T Y, Chu W Y, Xiao J M. Scientia Sinica (Mathematica), 1986(3), 316 (in Chinese). 张统一, 褚武扬, 肖纪美. 中国科学(A辑), 1986(3), 316. 64 Silverstein R, Eliezer D, Tal-Gutelmacher E. Journal of Alloys and Compounds, 2018, 747, 511. 65 Liou H Y, Shieh R I, Wei F I, et al. Corrosion, 1993, 49(5), 389. 66 Saleh A A, Hejazi D, Gazder A A, et al. International Journal of Hydrogen Energy, 2016, 41, 12424. 67 Mohtadi-Bonab M A, Szpunar J A, Basu R, et al. International Journal of Hydrogen Energy, 2015, 40, 1096. 68 Qu S P, Yin Y S. Materials Science and Technology, 2019, 27(1), 1 (in Chinese). 屈少鹏, 尹衍升. 材料科学与工艺, 2019, 27(1), 1. 69 Qu S P, Cheng B Z, Dong L H, et al. Acta Metallurgica Sinica, 2018, 54(8), 1094 (in Chinese). 屈少鹏, 程柏璋, 董丽华, 等. 金属学报, 2018, 54(8), 1094. 70 Herms E, Olive J M, Puiggali M. Materials Science and Engineering A, 1999, 272(2), 279. 71 Duranty E R, Roosendaal T J, Pitman S G, et al. Review of Scientific Instruments, 2017, 88, 095114. 72 Yamabe J, Nishimura S, Koga A. SAE International Journal of Materials and Manufacturing, 2009, 2(1), 452. 73 Nishimura S. Nippon Gomu Kyokaishi, 2013, 86(12), 360. 74 Cheng Y F. International Journal of Hydrogen Energy, 2007, 32, 1269. 75 Zhou C, Wang H, Ou-Yang L Z, et al. Materials Reports, 2019, 33(1), 117 (in Chinese). 周超, 王辉, 欧阳柳章, 等. 材料导报, 2019, 33(1), 117. 76 Tsiklios C, Hermesmann M, Muller T E. Applied Energy, 2022, 327, 120097. 77 Zhang X M, Wang Q G, Zhang X R, et al. China Plastics, 2023, 37(12), 70 (in Chinese). 张学敏, 王庆岗, 张雪茹, 等. 中国塑料, 2023, 37(12), 70. 78 Azeem M, Ya H H, Alam M A, et al. Journal of Energy Storage, 2022, 49, 103468. 79 Li D M, Gangloff R P, Scully J R. Metallurgical and Materials Transactions A, 2004, 35, 849. 80 Ronnebro E C E, Oelrich R L, Gates R O. Molecules, 2022, 27, 6528. 81 Hui J, Ren P G, Sun Z F, et al. Composite Interfaces, 2017, 24(8), 729. 82 Gaska K, Kadar R, Rybak A, et al. Polymers, 2017, 9(7), 294. 83 Qiu Y N, Yang H, Tong L G, et al. Metals, 2021, 11, 1101. 84 Park W S, Yoo S W, Kim M H, et al. Materials and Design, 2010, 31, 3630. 85 Zheng C S, Yu W W. Materials Science and Engineering: A, 2018, 710(5), 359. 86 Zhang M X, Kelly P M. Journal of Materials Science, 2002, 37, 3603. 87 Perlade A, Bouaziz O, Furnemont Q. Materials Science and Engineering A, 2003, 356(1-2), 145. 88 T/CATSI 05007-2023. 移动式真空绝热液氢压力容器专项技术要求, 2023. 89 Manwatkar S K, Sunil M, Prabhu A, et al. Transactions of the Indian Institute of Metals, 2019, 72, 1515. 90 Qu S S, Tan Y, Li W, et al. Shandong Chemical Industry, 2022, 51(20), 106 (in Chinese). 屈莎莎, 谭粤, 李蔚, 等. 山东化工, 2022, 51(20), 106. 91 Nayan N, Murty S V S N, Jha A K, et al. Materials and Design, 2014, 58, 445. 92 Yuri T, Ogata T, Saito M, et al. Cryogenics, 2001, 41, 475. 93 Lu Z C, Zhang X H, Ji W, et al. Materials Science and Engineering A, 2021, 818, 141380. 94 Hwang J S, Kim J H, Kim S K, et al. International Journal of Hydrogen Energy, 2020, 45, 9149. 95 Gomez A, Smith H. Aerospace Science and Technology, 2019, 95, 105438. 96 O’Gara J, Sangid M D. Composites Science and Technology, 2023, 232, 109864. 97 Bao J W, Zhong X Y, Zhang D J, et al. Journal of Materials Engineering, 2020, 48(8), 33 (in Chinese). 包建文, 钟翔屿, 张代军, 等. 材料工程, 2020, 48(8), 33. 98 Aziz M. Energies, 2021, 14, 5917. 99 Wolf J. MRS Bulletin, 2002, 27(9), 684. 100 Hastings L J, Hedayat A, Brown T M. Analytical modeling and test correlation of variable density multilayer insulation for cryogenic storage, 2004. 101 Zuttel A. Materials Today, 2003, 6(9), 24. 102 Park S, Lee C, Chung S, et al. Energies, 2024, 17, 4415. 103 Liu J J, Ma Y, Yang J G, et al. Frontiers in Chemistry, 2022, 10, 945208. 104 Kalibek M R, Ospanova A D, Suleimenova B, et al. Discover Nano, 2024, 19, 195. 105 Akunets A A, Basov N G, Bushuev V S, et al. International Journal of Hydrogen Energy, 1994, 19(8), 697. 106 Sabitu S T, Goudy A J. Metals, 2012, 2, 219. 107 Zhou C S, Fang Z G Z, Sun P. Journal of Power Sources, 2015, 278(15), 38. 108 Xu Y H, Zhou Y, Li Y T, et al. Molecules, 2024, 29, 1767. 109 Chen N, Qu S P, Li Y, et al. Journal of Applied Physics, 2010, 107, 09E123. 110 Turk A, Pu S D, Bombac D, et al. Acta Materialia, 2020, 197, 253. 111 Li L F, Song B, Cai Z Y, et al. Materials Science and Engineering A, 2019, 742, 712. 112 Yoo J, Jo M C, Kim D W, et al. Acta Materialia, 2020, 196, 370. 113 Du Y, Gao X H, Lan L Y, et al. International Journal of Hydrogen Energy, 2019, 44, 32292. 114 Wan H X, Min W L, Song D D, et al. Materials Chemistry and Physics, 2024, 328, 130028. 115 Zhu Y Q, Song W, Li Y X, et al. Surface Technology, 2022, 51(11), 126 (in Chinese). 朱永强, 宋维, 李雨霞, 等. 表面技术, 2022, 51(11), 126. 116 An T, Li S J, Qu J L, et al. International Journal of Fatigue, 2019, 129, 105235. 117 Wang Y F, Wu X P, Zhou Z L, et al. Results in Physics, 2018, 11, 5. 118 Wei F G, Tsuzaki K. Metallurgical and Materials Transactions A, 2006, 37A, 331. 119 Li W G, Wu W J, Yang Z X, et al. Corrosion Science, 2024, 233, 112086. |
|
|
|