METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Research Advances in Hydrogen Induced Damage of Gas Turbines in Hydrogen-containing/Pure-hydrogen Circumstances |
LI Cong1,2, ZHAO Lei1,2,*, XU Lianyong1,2, HAN Yongdian1,2, HAO Kangda1,2
|
1 School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China 2 Tianjin Key Laboratory of Modern Connection Technology, Tianjin 300350, China |
|
|
Abstract Amidst the global shift towards low-carbon energy structures, hydrogen energy has emerged as a prominent clean and renewable energy source, garnering increased attention. The utilization of hydrogen-doped or pure hydrogen gas turbines represents a crucial advancement in energy conversion technology, facilitating the widespread adoption of hydrogen energy on a large scale. However, the utilization of gas turbines in hydrogen-rich environments presents significant challenges due to the potential for hydrogen-induced damage, thereby constraining their long-term operational stability. Drawing upon extensive research findings from both domestic and international sources, this paper delineates the principal mechanisms underlying hydrogen-induced damage and elucidates the pertinent influencing factors. Furthermore, it synthesizes the intricate interactions occurring at the microscopic level between hydrogen and nickel-based superalloys, encompassing phenomena such as vacancies, dislocations, and grain boundaries. Research has evidenced that the presence of hydrogen canreduce in the ductility of nickel-based superalloys, although its impact on yield strength and tensile strength appears relatively marginal. Concurrently, hydrogen exerts a notable influence on crack propagation behavior, particularly under conditions of dynamic cyclic loading, whereby it expedites fatigue crack growth rates. Nevertheless, investigating the mechanisms of hydrogen-induced damage and material properties under elevated temperature and pressure poses significant challenges, necessitating further research and advancements in experimental apparatus. Hence, future endeavors should prioritize elucidating the synergistic interplay of multiple mechanisms to establish a novel standard for assessing material performance in high-temperature, high-pressure environments. Such efforts aim to more precisely evaluate the potential applications and safety characteristics of nickel-based superalloys in practical endeavors, such as hydrogen-doped/pure hydrogen gas turbine systems.
|
Published: 10 May 2025
Online: 2025-04-28
|
|
|
|
1 Wang L, Jiao S, Xie Y, et al. Energy, 2022, 239, 122194. 2 Chen Y, Zhao Y M, Cao J L, et al. Energy Engineering, 2022, 42(3), 88. (in Chinese). 陈宇, 赵彦旻, 曹吉领, 等. 能源工程, 2022, 42(3), 88. 3 Sun F. Contemporary Petroleum and Petrochemicals, 2023, 31(2), 40. (in Chinese). 孙菲. 当代石油石化, 2023, 31(2), 40. 4 Egeland-Eriksen T, Hajizadeh A, Sartori S. International Journal of Hydrogen Energy, 2021, 46(63), 31963. 5 Wei H Q, Wang N, Li W, et al. Journal of Tianjin University (Natural Science and Engineering Technology), 2022, 55(12), 1230(in Chinese). 卫海桥, 王楠, 李卫, 等. 天津大学学报(自然科学与工程技术版), 2022, 55(12), 1230. 6 Jiang Y H, Li Y G, Zheng K D, et al. Internal Combustion Engine and Accessories, 2023(20), 102(in Chinese). 姜悦辉, 李玉刚, 郑康东, 等. 内燃机与配件, 2023(20), 102. 7 berg S, Odenberger M, Johnsson F. International Journal of Hydrogen Energy, 2022, 47(1), 624. 8 Stefan E, Talic B, Larring Y, et al. International Materials Reviews, 2022, 67(5), 461. 9 Li X G. Shanghai Metal, 2023, 45(5), 1(in Chinese). 李星国. 上海金属, 2023, 45(5), 1. 10 Dadfarnia M, Nagao A, Wang S, et al. International Journal of Fracture, 2015, 196(1), 223. 11 Poorhaydari K. Engineering Failure Analysis, 2019, 105, 321. 12 Martin M L, Dadfarnia M, Orwig S, et al. Acta Materialia, 2017, 140, 300. 13 Liao Z Y, Zhang J H, Zhao J Q, et al. Journal of Iron and Steel Research, 2023, 35(9), 1053(in Chinese). 廖振洋, 张继舜, 赵吉庆, 等. 钢铁研究学报, 2023, 35(9), 1053. 14 Shu G G, Chen J, Zhang X Y, et al. Journal of Power Engineering, 2022, 42(12), 1213 (in Chinese). 束国刚, 陈坚, 张晓毅, 等. 动力工程学报, 2022, 42(12), 1213. 15 He L. Thermal Turbine, 2022, 51(3), 202(in Chinese). 何磊. 热力透平, 2022, 51(3), 202. 16 Sun D, Ma G, Wan Z, et al. Engineering Failure Analysis, 2023, 154, 107715. 17 Johnson W H, Thomson W. II. Proceedings of the Royal Society of London, 1997, 23(156-163), 168. 18 Li X, Ma X, Zhang J, et al. Acta Metallurgica Sinica (English Letters), 2020, 33(6), 759. 19 Sun B, Wang D, Lu X, et al. Acta Metallurgica Sinica (English Letters), 2021, 34(6), 741. 20 Zapffe C A, Sims C E. Transactions of the Metallurgical Society of AIME, 1941, 145, 225. 21 Fischer F D, Svoboda J. International Journal of Plasticity, 2014, 63, 110. 22 Xie D G, Wang Z J, Sun J, et al. Nature Materials, 2015, 14(9), 899. 23 Borruto A, Borruto T M R, Spada A. International Journal of Hydrogen Energy, 1999, 24(7), 651. 24 Westlake D G. Transactions of the American Mathematical Society, 1969, 62. 25 Kim Y S, Bak S H, Kim S S. Metallurgical and Materials Transactions A, 2016, 47(1), 222. 26 Pfeil L B, Carpenter H C H. Proceedings of the Royal Society of London, 1997, 112(760), 182. 27 Beachem C D. Metallurgical Transactions, 1972, 3(2), 441. 28 You Y, Teng Q, Zhang Z, et al. Materials Science and Engineering: A, 2016, 655, 277. 29 Lynch S P. Metallography, 1989, 23(2), 147. 30 Nagumo M. Materials Science and Technology, 2004, 20(8), 940. 31 Neeraj T, Srinivasan R, Li J. Acta Materialia, 2012, 60(13), 5160. 32 Yao J, Tan Q, Venezuela J, et al. Current Opinion in Solid State and Materials Science, 2023, 27(5), 101106. 33 Novak P, Yuan R, Somerday B P, et al. Journal of the Mechanics and Physics of Solids, 2010, 58(2), 206. 34 Martin M L, Robertson I M, Sofronis P. Acta Materialia, 2011, 59(9), 3680. 35 Wasim M, Djukic M B, Ngo T D. Engineering Failure Analysis, 2021, 123, 105312. 36 Djukic M B, Sijacki Zeravcic V, Bakic G M, et al. Engineering Failure Analysis, 2015, 58, 485. 37 Djukic M B, Bakic G M, Sijacki Zeravcic V, et al. Engineering Fracture Mechanics, 2019, 216, 106528. 38 Arora A, Singh H, Mahajan D K. Materials Science and Engineering: A, 2020, 787, 139488. 39 Ding Y, Yu H, Lin M, et al. Acta Materialia, 2022, 239, 118279. 40 Ogawa Y, Birenis D, Matsunaga H, et al. Materials Science and Engineering: A, 2018, 733, 316. 41 Huang S, Chen Z, Li Y, et al. Journal of Materials Engineering and Performance, 2019, 28(1), 567. 42 Li L, Wang Y, Liu J, et al. Journal of Materials Processing Technology, 2023, 316, 117958. 43 Zhang D, Shen J, Xu Y, et al. International Journal of Hydrogen Energy, 2024, 50, 1147. 44 Koyama M, Rohwerder M, Tasan C C, et al. Materials Science and Technology, 2017, 33(13), 1481. 45 Xie D, Li S, Li M, et al. Nature Communications, 2016, 7(1), 13341. 46 Nagumo M, Nakamura M, Takai K. Metallurgical and Materials Transactions A, 2001, 32(2), 339. 47 Li Y, Wang Q, Zhang H, et al. International Journal of Hydrogen Energy, 2023, 48(11), 4516. 48 Tateyama Y, Ohno T. Physical Review B, 2003, 67(17), 174105. 49 Lu G, Kaxiras E. Physical Review Letters, 2005, 94(15), 155501. 50 Li S, Li Y, Lo Y C, et al. International Journal of Plasticity, 2015, 74, 175. 51 Wang J, Shao B, Shan D, et al. Materials Today Communications, 2023, 36, 106390. 52 Counts W A, Wolverton C, Gibala R. Acta Materialia, 2010, 58(14), 4730. 53 Tsuru T, Yamaguchi M, Ebihara K, et al. Computational Materials Science, 2018, 148, 301. 54 Yoo J, Jo M C, Jo M C, et al. Acta Materialia, 2021, 207, 116661. 55 Sawada H, Omura T. Computational Materials Science, 2021, 198, 110652. 56 Cottrell A H, Bilby B A. Proceedings of the Physical Society Section A, 1949, 62(1), 49. 57 Robertson I M. Engineering Fracture Mechanics, 2001, 68(6), 671. 58 Robertson I M, Sofronis P, Nagao A, et al. Metallurgical and Materials Transactions B, 2015, 46(3), 1085. 59 Lindgren L E, Domkin K, Hansson S. Mechanics of Materials, 2008, 40(11), 907. 60 Teus S M, Shivanyuk V N, Shanina B D, et al. Physica Status Solidi (a), 2007, 204(12), 4249. 61 Gavriljuk V G, Shanina B D, Shyvanyuk V N, et al. Journal of Applied Physics, 2010, 108(8), 083723. 62 Zhu Y, Li Z, Huang M, et al. International Journal of Plasticity, 2017, 92, 31. 63 Liang S, Zhu Y, Huang M, et al. Modelling and Simulation in Materials Science and Engineering, 2021, 29(6), 065003. 64 Wilcox B A, Smith G C. Acta Metallurgica, 1964, 12(4), 371. 65 McInteer W A, Thompson A W, Bernstein I M. Acta Metallurgica, 1980, 28(7), 887. 66 Robertson I M, Birnbaum H K. Scripta Metallurgica, 1984, 18(3), 269. 67 Wang S, Nagao A, Edalati K, et al. Acta Materialia, 2017, 135, 96. 68 Harris Z D, Lawrence S K, Medlin D L, et al. Acta Materialia, 2018, 158, 180. 69 Wang S, Nagao A, Sofronis P, et al. Acta Materialia, 2018, 144, 164. 70 Ogawa Y, Birenis D, Matsunaga H, et al. Scripta Materialia, 2017, 140, 13. 71 Birenis D, Ogawa Y, Matsunaga H, et al. Acta Materialia, 2018, 156, 245. 72 Sun Q, He J, Nagao A, et al. Acta Materialia, 2023, 246, 118660. 73 Bechtle S, Kumar M, Somerday B P, et al. Acta Materialia, 2009, 57(14), 4148. 74 Yamaguchi M, Ebihara K I, Itakura M, et al. Metallurgical and Materials Transactions A, 2011, 42(2), 330. 75 Mai H L, Cui X Y, Scheiber D, et al. Materials & Design, 2021, 212, 110283. 76 Huang C, Song K, Zhou S, et al. Materials Today Communications, 2023, 37, 107222. 77 Jothi S, Croft T N, Brown S G R. International Journal of Hydrogen Energy, 2014, 39(35), 2067. 78 Depover T, Verbeken K. International Journal of Hydrogen Energy, 2018, 43(5), 3050. 79 Di Stefano D, Nazarov R, Hickel T, et al. Physical Review B, 2016, 93(18), 184108. 80 Takahashi J, Kawakami K, Kobayashi Y, et al. Scripta Materialia, 2010, 63(3), 261. 81 Wei F G, Tsuzaki K. Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, Woodhead Publishing, USA, 2012, pp. 493. 82 Wallaert E, Depover T, Arafin M, et al. Metallurgical and Materials Transactions A, 2014, 45(5), 2412. 83 Li X, Zhang J, Fu Q, et al. International Journal of Hydrogen Energy, 2018, 43(43), 20118. 84 Rezende M C, Araujo L S, Gabriel S B, et al. International Journal of Hydrogen Energy, 2015, 40(47), 17075. 85 Stenerud G, Wenner S, Olsen J S, et al. International Journal of Hydrogen Energy, 2018, 43(13), 6765. 86 Wu Y X, Li X Y, Wang Y M. Acta Materialia, 2007, 55(14), 4845. 87 Xue H T, Li J Z, Tang F L, et al. Computational Materials Science, 2021, 194, 110449. 88 Zhang Z, Zhang C H, Chen B. International Journal of Hydrogen Energy, 2024, 50, 342. 89 Qin L, Zhao M, Li Z, et al. Corrosion Science, 2023, 218, 111189. 90 Gao Y G, Zhao Y H, Wang X M, et al. Casting Engineering, 2023, 47(4), 27(in Chinese). 高亚龙, 赵义瀚, 王晓明, 等. 铸造工程, 2023, 47(4), 27. 91 Campari A, Ustolin F, Alvaro A, et al. International Journal of Hydrogen Energy, 2023, 48(90), 35316. 92 Lu X, Ma Y, Wang D. Materials Science and Engineering: A, 2020, 792, 139785. 93 Kirchheim R. Acta Materialia, 2007, 55(15), 5129. 94 Lee J, Lee T, Kwon Y J. Corrosion Reviews, 2015, 33(6), 433. 95 Ogawa Y, Hosoi H, Tsuzaki K, et al. Acta Materialia, 2020, 199, 181. 96 Fukuyama S, Yokogawa K. Superalloys, 1994, 718, 807. 97 Wei W. Superalloys, 1997, 36(4), 705. 98 Zhang Z, Moore K L, McMahon G, et al. Corrosion Science, 2019, 146, 58. 99 Galliano F, Andrieu E, Cloué J M, et al. International Journal of Hydrogen Energy, 2017, 42(33), 21371. 100 Ogawa Y, Takakuwa O, Okazaki S, et al. Corrosion Science, 2019, 161, 108186. 101 Ogawa Y, Noguchi K, Takakuwa O. Acta Materialia, 2022, 229, 117789. 102 Moody N R, Stoltz R E, Perra M W. Metallurgical Transactions A, 1987, 18(8), 1469. 103 Sampath D, Akid R, Morana R. Engineering Fracture Mechanics, 2018, 191, 324. 104 Ogawa Y, Takakuwa O, Okazaki S, et al. Corrosion Science, 2020, 174, 108814. 105 Jebaraj J J M, Morrison D J, Suni I I. Corrosion Science, 2014, 80, 517. 106 Tsay L W, Lin H H, Shiue R K. Corrosion Science, 2004, 46(11), 2651. 107 Sun Z, Moriconi C, Benoit G, et al. Metallurgical and Materials Tran-sactions A, 2013, 44(3), 1320. 108 Shinko T, Hénaff G, Halm D, et al. International Journal of Fatigue, 2019, 121, 197. 109 Alvaro A, Wan D, Olden V, et al. Engineering Fracture Mechanics, 2019, 219, 106641. 110 Matsunaga H, Takakuwa O, Yamabe J, et al. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 375(2098), 20160412. 111 Wan D, Deng Y, Meling J I H, et al. Acta Materialia, 2019, 170, 87. 112 Fu Z, Wu P, Zhang Y, et al. International Journal of Fatigue, 2022, 160, 106848. 113 Fu Z, Wu P, Yang Q, et al. Corrosion Science, 2024, 227, 111745. 114 Takakuwa O, Ogawa Y, Miyata R. Scientific Reports, 2023, 13(1), 6804. |
|
|
|