METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Recent Advances in Research of Ruthenium-based Catalysts for Hydrogen Production from Ammonia Decomposition |
WANG Fan1, ZHAO Yuchen2, ZHENG Wenyue1,*
|
1 National Center of Materials Service Safety, University of Science and Technology Beijing, Beijing 102200, China 2 China United Gas Turbine Technology Co., Ltd., Beijing 100016, China |
|
|
Abstract As a sustainable resource, hydrogen is considered to be a competitive candidate for future energy consumption. Ammonia is a promising carbon-free hydrogen carrier with a hydrogen content of 17.6wt%. Ammonia decomposition is low-cost and high-efficiency, and on-site ammonia decomposition can to a certain extent serve as a route to hydrogen storage and transportation. Various metal-based ammonia decomposition catalysts have been developed, and ruthenium-based catalysts are superior due to their suitable Ru-N binding energy. In recent years, people have been working to improve the performance of Ru-based catalysts by studying various support and promoter materials. Advanced technology is used to reveal the relationship between catalytic performance and catalyst microstructure to reduce the loading of Ru and the reaction temperature to improve its economicity. This paper describes the different ways to produce hydrogen and summarizes the economics of green ammonia and the construction of green ammonia projects by domestic and international companies. Meanwhile, the mechanism, and kinetic and thermodynamic processes of ammonia decomposition reaction are analyzed. The research progress of noble metal Ru-based catalysts for ammonia decomposition and the effects of different types of carriers and promoters on the catalytic performance of Ru-based catalysts are reviewed. In addition, the ammonia decomposition reactor and its aging issues are introduced. Finally, the improvement measures and future development direction of ammonia decomposition catalytic hydrogen production are prospected, aiming to provide supporting information for the development of ‘hydrogen-ammonia' energy.
|
Published: 10 October 2024
Online: 2024-10-23
|
|
Fund:China Heavy-duty Gas Turbine Technology Co., Ltd. (J277). |
|
|
1 Dawood F, Anda M, Shafiullah G M. International Journal of Hydrogen Energy, 2020, 45, 3847. 2 Pandev M, Lucchese P, Mansilla C, et al. Bulgarian Chemical Communications, 2017, 49, 84. 3 Navlani-García M, Miguel-García I, Berenguer-Murcia Á, et al. Catalysis Science & Technology, 2016, 6, 2623. 4 Gao Z W, Li X G, Liu Z X, et al. Materials Reports, 2022, 36(14), 74 (in Chinese). 高助威, 李小高, 刘钟馨, 等. 材料导报, 2022, 36(14), 74. 5 Li F, Ding X B, Cao Q C, et al. International Journal of Hydrogen Energy, 2022, 47, 3762. 6 Satyapal S, Petrovic J, Read C, et al. Catalysis Today, 2007, 120, 246. 7 El-Shafie M, Kambara S, Hayakawa Y. Journal of the Energy Institute, 2021, 99, 145. 8 Zhou C, Wu K, Huang H W, et al. ACS Catalysis, 2021, 11, 10345. 9 Conte M, Iacobazzi A, Ronchetti M, et al. Journal of Power Sources, 2001, 100, 171. 10 Lucentini I, Garcia X, Vendrell X, et al. Industrial & Engineering Chemistry Research, 2021, 60, 18560. 11 Cao L, Yu I, Xiong X, et al. Environmental Research, 2020, 186, 109547. 12 Chen W H, Biswas P P, Ong H C, et al. Fuel, 2023, 333, 126526. 13 Soltani S M, Lahiri A, Bahzad C, et al. Carbon Capture Science & Technology, 2021, 1, 100003. 14 Chen W H, Chen C Y. Applied Energy, 2020, 258, 114078. 15 Moral G, Ortiz-Imedio R, Ortiz A, et al. Industrial & Engineering Chemistry Research, 2022, 61, 6106. 16 Anwar S, Khan F, Zhang Y, et al. International Journal of Hydrogen Energy, 2021, 46, 32284. 17 Wang S, Lu A, Zhong C J. Nano Convergence, 2021, 8, 1. 18 Liu D B, Su X D, Zhao H L. Materials Reports, 2019, 33(S2), 13 (in Chinese). 刘大波, 苏向东, 赵宏龙. 材料导报, 2019, 33(S2), 13. 19 Pinsky R, Sabharwall P, Hartvigsen J, et al. Progress in Nuclear Energy, 2020, 123, 103317. 20 Holladay J D, Hu J L, King D L, et al. Catalysis Today, 2009, 139, 244. 21 Felderhoff M, Weidenthaler C, Von H R, et al. Physical Chemistry Chemical Physics, 2007, 9, 2643. 22 Yu X, Sandhu N S, Yang Z Y, et al. Applied Energy, 2020, 271, 115169. 23 Klerke A, Christensen C H, Norskov J K, et al. Journal of Materials Chemistry, 2008, 18, 2304. 24 Sun S C, Jiang Q Q, Zhao D Y, et al. Renewable and Sustainable Energy Reviews, 2022, 169, 112918. 25 Teng Y, Yin P B, Nie C F, et al. Oil and Gas Storage and Transportation, 2022, 41(10), 1115 (in Chinese). 滕霖, 尹鹏博, 聂超飞, 等. 油气储运, 2022, 41(10), 1115. 26 Tan H Z, Zhou S K, Yang W J, et al. Chinese Journal of Electrical Engineering, 2023, 43(1), 181. 谭厚章, 周上坤, 杨文俊, 等. 中国电机工程学报, 2023, 43(1), 181. 27 Egerer J, Grimm V, Niazmand K, et al. Applied Energy, 2023, 334, 120662. 28 Perman E P, Atkinson G A S. Proceedings of the Royal Society of London, 1905, 74, 110. 29 Chiuta S, Everson R C, Neomagus H, et al. International Journal of Hydrogen Energy, 2014, 39, 11390. 30 Mccabe R W. Journal of Catalysis, 1983, 79, 445. 31 Armenise S, García-Bordejé E, Valverde J L et al. Physical Chemistry Chemical Physics, 2013, 15, 12104. 32 Ganley, Jason C. Education for Chemical Engineers, 2017, 21, 11. 33 Armenise S, Cazaa F, Monzón A, et al. Fuel, 2018, 233, 851. 34 Yu P, Guo J, Liu L, et al. ChemSusChem, 2016, 9, 364. 35 Robert W. CSC Handbook of chemistry and physics, CRC Press, USA, 1988, pp. 77. 36 Ojelade O A, Zaman S F. Chemical Papers, 2021, 75, 57. 37 Oyama S T. Journal of Catalysis, 1992, 133, 358. 38 Guan J Y, Zhang H H, Su Z K, et al. Chemical Progress, 2022, 41(12), 6319(in Chinese). 关静莹, 张欢欢, 苏子恺, 等. 化工进展, 2022, 41(12), 6319. 39 Ganley J C, Thomas F S, Seebauer E G, et al. Catalysis Letters, 2004, 96, 117. 40 Tsai W, Weinberg W H. Journal of Physical Chemistry, 1987, 91, 5302. 41 He H H, Jiang H J, Yang F Y, et al. International Journal of Hydrogen Energy, 2023, 48, 5030. 42 Lucentini I, Colli G G, Luzi C D, et al. Applied Catalysis B: Environmental, 2021, 286, 119896. 43 Maleki H, Fulton M, Bertola V. Chemical Engineering Journal, 2021, 411, 128595. 44 Kyriakou V, Garagounis I, Vourros A, et al. Joule, 2020, 4, 142. 45 Smith C, Hill A K, Torrente-Murciano L. Energy & Environmental Science, 2020, 13, 331. 46 Schüth F, Palkovits R, Schlögl R, et al. Energy & Environmental Science, 2012, 5, 6278. 47 Makowski P, Thomas A, Kuhn P, et al. Energy & Environmental Science, 2009, 2, 480. 48 Simonsen S B, Chakraborty D, Chorkendorff I, et al. Applied Catalysis A: General, 2012, 447, 22. 49 Egawa C, Nishida T, Naito S, et al. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1984, 80, 1595. 50 García-García F R, Guerrero-Ruiz A, Rodríguez-Ramos I. Topics in Catalysis, 2009, 52, 758. 51 Mukherjee S, Devaguptapu S V, Sviripa A, et al. Applied Catalysis B: Environmental, 2018, 226, 162. 52 Ju X H, Liu L, Yu P, et al. Applied Catalysis B: Environmental, 2017, 211, 167. 53 Lucentini I, Casanovas A, Llorca J. International Journal of Hydrogen Energy, 2019, 44, 12693. 54 Huang C Q, Yu Y Z, Yang J M, et al. Applied Surface Science, 2019, 476, 928. 55 Wang Z Q, Qu Y M, Shen X L, et al. International Journal of Hydrogen Energy, 2019, 44, 7300. 56 Hu X C, Fu X P, Wang W W, et al. Applied Catalysis B: Environmental, 2020, 268, 118424. 57 El-Shafie M, Kambara S, Hayakawa Y. Catalysis Today, 2022, 397, 103. 58 Le T A, Kim Y, Kim H W, et al. Applied Catalysis B: Environmental, 2021, 285, 119831. 59 Srifa A, Okura K, Okanishi T, et al. Applied Catalysis B: Environmental, 2017, 218, 1. 60 Pinzón M, Romero A, Lucas-Consuegra A D, et al. Journal of Industrial and Engineering Chemistry, 2021, 94, 326. 61 Kocer T, Oztuna F E S, Kurtolu S F, et al. Applied Catalysis A: General, 2021, 610, 117969. 62 Bell T E, Zhan G W, Wu K J, et al. Topics in Catalysis, 2017, 60, 1251. 63 Marco Y, Roldán L, Armenise S, et al. ChemCatChem, 2013, 5, 3829. 64 Duan X Z, Zhou J H, Gang Q, et al. Chinese Journal of Catalysis, 2010, 31, 979. 65 Chen C, Chen Y W, Ali A M, et al. Chemical Engineering & Technology, 2020, 43, 719. 66 Yin S F, Zhang Q H, Xu B Q, et al. Journal of Catalysis, 2004, 224, 384. 67 Li G, Kanezashi M, Tsuru T. Catalysts, 2017, 7, 23. 68 Zhang R, Gopal M, Jepson W P. In: Corrosion97. New Orleans, 1997, pp. 1403. 69 Yin S F, Xu B Q, Ng C F, et al. Applied Catalysis B: Environmental, 2004, 48, 237. 70 Yin S F, Xu B Q, Wang S J, et al. Catalysis Letters, 2004, 96, 113. 71 Borisov V A, Iost K N, Petrunin D A, et al. Kinetics and Catalysis, 2019, 60, 372. 72 Ng P F, Li L, Wang S B, et al. Environmental Science & Technology, 2007, 41, 3758. 73 Di C A, Vecchione L, Del P Z. International Journal of Hydrogen Energy, 2014, 39, 808. 74 Su Q, Gu L L, Yao Y, et al. Applied Catalysis B: Environmental, 2017, 201, 451. 75 Kurtolu S F, Soyer-Uzun S, Uzun A. Catalysis Today, 2020, 357, 425. 76 Zhang X L, Liu L, Feng J, et al. Catalysis Letters, 2022, 152, 1170. 77 Nagaoka K, Eboshi T, Abe N, et al. International Journal of Hydrogen Energy, 2014, 39, 20731. 78 Zheng C, Guan B, Guo J, et al. Industrial & Engineering Chemistry Research, 2023, 7, 13. 79 Mazzone S, Goklany T, Zhang G, et al. Applied Catalysis A: General, 2022, 632, 118484. 80 Karim A M, Prasad V, Mpourmpakis G, et al. Journal of the American Chemical Society, 2009, 131, 12230. 81 Kim H B, Park E D. Catalysis Today, 2023, 411, 113817. 82 Hu X C, Wang W W, Si R, et al. Science China Chemistry, 2019, 62, 1625. 83 Huang C, Yu Y, Yang J, et al. Applied Surface Science, 2019, 476, 928. 84 Hu X C, Fu X P, Wang W W, et al. Applied Catalysis B: Environmental, 2020, 268, 118424. 85 Guo J, Chen Z, Wu A, et al. Chemical Communications, 2015, 51, 15161. 86 Choudhary T V, Sivadinarayana C, Goodman D W. Catalysis Letters, 2001, 72, 197. 87 Guo J, Chen Z, Wu A, et al. Chemical Communications, 2015, 51, 15161. 88 Bajus S, Agel F, Kusche M, et al. Applied Catalysis A: General, 2016, 510, 189. 89 Wang S J, Yin S F, Li L, et al. Applied Catalysis B: Environmental, 2004, 52, 287. 90 Hill A K, Torrente-Murciano L. International Journal of Hydrogen Energy, 2014, 39, 7646. 91 Devkota S, Shin B J, Mun J H, et al. Fuel, 2023, 342, 127879. 92 Badescu V. International Journal of Energy Research, 2020, 44, 5360. 93 Ma H, Schneider W F. Journal of Catalysis, 2020, 383, 322. |
[1] |
SU Yue, YAN Nan, BAI Xiaoyu, FU Lin, ZHANG Qijun, LIANG Bin, WANG Baodong, WANG Libin, ZHANG Yingjie, ZHANG Anqi. Research Progress and Application on Engineering Characteristics of Ready-mixed Fluid Solidified Soil[J]. Materials Reports, 2024, 38(9): 23070212-7. |
|
|
|
|