| METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
| Research Progress of Nickel-based Powder Metallurgy Superalloys Reinforced by Ceramic Particle |
| MENG Jiale1, LU Chuncheng1, WANG Enhui1,*, ZHANG Xueliang2, SHI Yingnan2, JIA Jian2, HOU Xinmei1
|
1 Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing 100083, China 2 Beijing GAONA Materials & Technology Co., Ltd., Beijing 100081, China |
|
|
|
|
Abstract Nickel-based powder metallurgy superalloys play an important supporting role in key components such as turbine disks for aero-engines due to their excellent comprehensive performance. In order to meet the demand for increased aero-engine thrust-to-weight ratios, the turbine inlet temperature (TIT) has been increasing, and the performance of nickel-based powder metallurgy superalloys needs to be strengthened urgently. However, due to the inherent strengthening mode, the performance of traditional nickel-based powder metallurgy superalloys is gradually approaching the limit, and although the performance of the material has been improved through some strengthening means, it is still difficult to meet the requirements. Ceramic particle enhancement technology has shown significant potential in performance enhancement. This paper systematically reviews the latest progress of ceramic particle enhancement of nickel-based powder metallurgy superalloys, including the development history and the advantages of ceramic particle enhancement. It focuses on analyzing the characteristics of the main enhancement mechanisms, including load transfer strengthening, fine grain strengthening, Orowan strengthening and thermal expansion coefficient mismatch, and further discusses the impact of a variety of enhancement phases on the mechanical properties of nickel-based alloys. On this basis, the specific effects of different enhancement phases on the mechanical properties of nickel-based alloys are discussed, and finally, the future research direction of particle-enhanced nickel-based powder metallurgy superalloys is proposed, with a view to providing theoretical support and path reference for the enhancement of nickel-based powder metallurgy superalloys.
|
|
Published: 25 January 2026
Online: 2026-01-27
|
|
|
|
|
1 Li X L, He S M, Zhou X T, et al. Materials Characterization, 2014, 95, 171. 2 Zhou P J, Yu J J, Sun X F, et al. Materials Science and Engineering: A, 2012, 551, 236. 3 Chen P F, Xi W J, Jia J, et al. Journal of Iron and Steel Research, 2020, 32(9), 833(in Chinese). 陈鹏飞, 席文君, 贾建, 等. 钢铁研究学报, 2020, 32(9), 833. 4 Jia J, Luo J P, Zhang H P, et al. Materials Reports, 2024, 38(15), 54(in Chinese). 贾建, 罗俊鹏, 张浩鹏, 等. 材料导报, 2024, 38(15), 54. 5 Wang J, Huang H L, Zhou Y Z, et al. Materials Reports, 2023, 37(21), 242(in Chinese). 王杰, 黄海亮, 周亚洲, 等. 材料导报, 2023, 37(21), 242. 6 Sun Y L, Fu L M, Fu Z Q, et al. Scripta Materialia, 2017, 141, 1. 7 Hu W Q, Huang Z Y, Yu Q, et al. Metals and Materials International, 2021, 27(8), 3003. 8 Pan Y, Kuang F, Lu X. Materials Reports, 2024, 38(21), 179 (in Chinese). 潘宇, 况帆, 路新. 材料导报, 2024, 38(21), 179. 9 Ni J, Chai H, Shi K, et al. Materials Reports, 2019, 33(S2), 369 (in Chinese). 倪嘉, 柴皓, 史昆, 等. 材料导报, 2019, 33(S2), 369. 10 Nie J H, Fan J Z, Wei S H, et al. Aeronautical Manufacturing Technology, 2017, 60(16), 26 (in Chinese). 聂俊辉, 樊建中, 魏少华, 等. 航空制造技术, 2017, 60(16), 26. 11 Hao S M, Mao J W, Xie J P. Powder Metallurgy Industry, 2018, 28(1), 56(in Chinese). 郝世明, 毛建伟, 谢敬佩. 粉末冶金工业, 2018, 28(1), 56. 12 Tjong S C. Materials Science and Engineering: R: Reports, 2013, 74(10), 281. 13 Ding H Y, Fu X L, Dai Q X, et al. Heat Treatment of Metals, 2007, 32(6), 37 (in Chinese). 丁红燕, 符学龙, 戴起勋, 等. 金属热处理, 2007, 32(6), 37. 14 Guo W M, Dong J X, Wu J T, et al. Journal of Iron and Steel Research, 2005, 17(1), 59 (in Chinese). 国为民, 董建新, 吴剑涛, 等. 钢铁研究学报, 2005, 17(1), 59. 15 Zhang Q, Zheng L, Xu W Y, et al. Powder Metallurgy Technology, 2022, 40(5), 387 (in Chinese). 张强, 郑亮, 许文勇, 等. 粉末冶金技术, 2022, 40(5), 387. 16 Liu J W, Cao J H, Song M H, et al. Heilongjiang Science, 2021, 12(14), 14 (in Chinese). 刘佳伟, 曹金华, 宋美慧, 等. 黑龙江科学, 2021, 12(14), 14. 17 Zhu G L, Wang R, Wang W, et al. Journal of Materials Science and Engineering. 2018, 36(3), 496 (in Chinese). 祝国梁, 王瑞, 王炜, 等. 材料科学与工程学报, 2018, 36(3), 496. 18 Ding Y C, Zhang S P, Liu J H. Foundry Technology, 2014, 35(7), 1376 (in Chinese). 丁义超, 张世凭, 刘杰慧. 铸造技术, 2014, 35(7), 1376. 19 Yang D, Zhou Y C, Xu L J, et al. Special Casting & Nonferrous Alloys, 2024, 44(4), 465 (in Chinese). 杨丹, 周玉成, 徐流杰, 等. 特种铸造及有色合金, 2024, 44(4), 465. 20 He Y Q. Hot Working Technology, 2012, 41(2), 133 (in Chinese). 贺毅强. 热加工工艺, 2012, 41(2), 133. 21 Huang Y, Li Y C, Lei B, et al. Journal of Functional Materials, 2022, 53(10), 10071 (in Chinese). 黄颖, 李育川, 雷波, 等. 功能材料, 2022, 53(10), 10071. 22 Nardone V C, Prewo K M. Scripta Metallurgica, 1986, 20(01), 43. 23 Sanaty-Zadeh Amirreza. Materials Science Engineering: A, 2012, 531, 112. 24 Reddy A P, Krishna P V, Rao R N, et al. Journal of Testing and Eva-luation, 2020, (48)4, 3035. 25 Zou Z X, Xiang J Z, Xu S Y. Physics Examination and Testing, 2012, 30(6), 13 (in Chinese). 邹章雄, 项金钟, 许思勇. 物理测试, 2012, 30(6), 13. 26 Srivastava N, Chaudhari G P. Materials Science Engineering: A, 2018, 724, 199. 27 Lu J, Zeng X Q, Ding W J. Light Metals, 2008, 36(8), 59 (in Chinese). 路君, 曾小勤, 丁文江. 轻金属, 2008, 36(8), 59. 28 Zhang Z, Chen D L. Materials Science Engineering: A, 2008, 483, 148. 29 Luan B F, Wu G H, Hansen N, et al. Materials Science and Technology, 2007, 23(2), 233. 30 Kelly P M. Scripta Materialia, 1972, 6(8), 647. 31 Wang Z G. Fabrication and mechanical properties of nano-SiC reinforced aluminum matrix composites by powder metallurgy method. Ph. D. Thesis, Jilin University, China, 2016 (in Chinese). 王治国. 纳米SiC增强铝基复合材料的粉末冶金法制备及其力学性能. 博士学位论文, 吉林大学, 2016. 32 Nie J F, Fan Y, Zhao L, et al. Materials Reports, 2021, 35(9), 9009 (in Chinese). 聂金凤, 范勇, 赵磊, 等. 材料导报, 2021, 35(9), 9009. 33 Wang R, Zhu G L, Zhou W Z, et al. Materials & Design, 2020, 191, 108638. 34 Zhang Y J, Wang M L, Li X F, et al. China Foundry, 2015, 12(4), 251. 35 Arsenault R J, Shi N. Materials Science and Engineering, 1986, 81, 175. 36 Ashby M F. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 1970, 21(170), 399. 37 Zhang H Y. A study on the effect of TiB2 addition on microstructure and properties of FGH97 superalloy. Master’s Thesis, Harbin Institute of Technology, China, 2020 (in Chinese). 张翰洋. TiB2添加量对FGH97合金组织性能影响的研究. 硕士学位论文, 哈尔滨工业大学, 2020. 38 Wu C X, Wang Z, Jiang L. Materials Science and Engineering of Powder Metallurgy, 2018, 23(1), 25 (in Chinese). 吴程鑫, 王子, 江亮. 粉末冶金材料科学与工程, 2018, 23(1), 25. 39 Che H Y, Wang T J, Qing W, et al. Powder Metallurgy Industry, 2022, 32(4), 1 (in Chinese). 车洪艳, 王铁军, 秦巍, 等. 粉末冶金工业, 2022, 32(4), 1. 40 Song X J, Wang C Y, Wang Y, et al. Forging & Stamping Technology, 2020, 45(12), 195 (in Chinese). 宋晓俊, 王超渊, 汪煜, 等. 锻压技术, 2020, 45(12), 195. 41 Sun D J, Zhao K, Li G Z, et al. Journal of Alloys and Compounds, 2022, 894, 162366. 42 Xiao L, Liu T T, Chen X H, et al. Materials Reports, 2024, 38(17), 155 (in Chinese). 肖璐, 刘婷婷, 陈先华, 等. 材料导报, 2024, 38(17), 155. 43 Xiao B L, Ma Z Y, Wang Q Z, et al. Materials China, 2010, 29(4), 28 (in Chinese). 肖伯律, 马宗义, 王全兆, 等. 中国材料进展, 2010, 29(4), 28. 44 Ren Y, Lu X C, Xu A F, et al. Heat Treatment, 2011, 26(5), 15 (in Chinese). 任莹, 路学成, 许爱芬, 等. 热处理, 2011, 26(5), 15. 45 Ma G B, Tan J B. Foundry Equipment & Technology, 2019, 215(2), 50 (in Chinese). 马国彬, 谭建波. 铸造设备与工艺, 2019, 215(2), 50. 46 Hattali M L, Valette S, Ropital F, et al. Journal of the European Ceramic Society, 2009, 29(4), 813. 47 Gu Z Y. Preparation process and organization property analysis of ni matrix composites. Master’s Thesis, Tiangong University, China, 2017 (in Chinese). 顾正阳. Ni基复合材料制备工艺与组织性能分析. 硕士学位论文, 天津工业大学, 2017. 48 Walunj G, Bearden A, Patil A, et al. Materials, 2020, 13(22), 5306. 49 Veerappan G, Ravichandran M, Meignanamoorthy M, et al. Silicon, 2021, 13(4), 973. 50 Ding Q H, Ning Z H. Journal of Materials Science and Engineering, 2021, 39(5), 783 (in Chinese). 丁桥华, 宁志华. 材料科学与工程学报, 2021, 39(5), 783. 51 Yang C. Study on the Preparation, Microstructure and property of SiC nanoparticle dispersion strengthening ni-based alloys. Ph. D. Thesis, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, China, 2017 (in Chinese). 杨超. 纳米碳化硅弥散强化镍基合金的制备及显微结构与性能研究. 博士学位论文, 中国科学院研究生院(上海应用物理研究所), 2017. 52 Akhtar F. Materials Science and Engineering: A, 2009, 499(1-2), 415. 53 Mohammed A T, Mahmoud F Z. Silicon, 2018, 10, 1351. 54 Martinez-Franco E, Trejo-Camacho J, Ma C, et al. Journal of Alloys and Compounds, 2022, 927, 166. 55 Xu C E. Studies on preparation and mechanical properties of Y2O3/Carbon nanotubes/nickle matrix composite. Master’s Thesis, Lanzhou University, China, 2009 (in Chinese). 徐常恩. Y2O3/碳纳米管/镍基复合材料的制备及其性能研究. 硕士学位论文, 兰州大学, 2009. 56 Li J, Xiong W H, Yang Q Q, et al. Materials for Mechanical Engineering, 2011, 35(9), 85 (in Chinese). 李俊, 熊惟皓, 杨青青, 等. 机械工程材料, 2011, 35(9), 85. 57 Corthay S, Kutzhanov M K, Narzulloev U U, et al. Materials Letters, 2022, 308, 131285. 58 Tian Y, Li X Y, Jia L M, et al. Foundry Equipment & Technology, 2024, 46(1), 60 (in Chinese). 田燕, 李昕悦, 贾丽敏, 等. 铸造设备与工艺, 2024, 46(1), 60. 59 Cao H Y. Preparation and properties of multi-phase synergetic reinforced Cu matrix composite. Ph. D. Thesis, Yanshan University, China, 2022 (in Chinese). 曹海要. 多相协同增强Cu基复合材料的制备及性能研究. 博士学位论文, 燕山大学, 2022. |
|
|
|