| INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
| Preparation and Properties of Iron Tailings Porous Ceramics Using Silicon Carbide as Foaming Agent |
| NIU Shunan1, ZHENG Lijun1,*, GAO Yimeng1, QU Jiayin1, WANG Jifu1, WANG Peng2
|
1 School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, Liaoning, China 2 Anshan Hefeng Refractories Co.,Ltd., Anshan 114225, Liaoning, China |
|
|
|
|
Abstract Iron tailings (IOT) porous ceramics were successfully prepared by using Anshan iron tailings as the main raw material, supplemented with Al2O3, sodium tetraborate and SiC, using the foaming method combined with the atmospheric pressure sintering technique under the condition of holding temperature of 1 110—1 140 ℃ for 30 min. The effects of sintering temperature and SiC blowing agent addition on the microstructure and properties of the porous ceramics were systematically investigated. It was shown that the mineral phases of the porous ceramics were mainly cristobalite, quartz, hematite and anorthite. The addition of SiC blowing agent significantly optimizes the pore structure of the samples, increases the apparent porosity, and enhances the compressive strength to a certain extent, but has relatively little effect on the thermal conductivity. In contrast, the effect of sintering temperature on thermal conductivity was more significant, when the sintering temperature was increased to 1 130 ℃, the pore structure tends to be homogeneous, and the thermal conductivity is reduced to the minimum, which effectively improves the thermal insulation performance of the samples. When the addition amount of SiC was 3%, the pore structure of the sample was more uniform at 1 130 ℃ for 30 min. The bulk density was 0.85 g/cm3, the apparent porosity was 62.06%, the compressive strength was 8.69 MPa, and the thermal conductivity is 0.30 W/(m·K), and in this case, the porous ceramics prepared has a better structure and performance, indicating that IOT is suitable for doing thermal insulation materials.
|
|
Published: 25 January 2026
Online: 2026-01-27
|
|
|
|
|
1 Wang Y M, Chang Q F. Metal Mine, 1999, 271(1), 1(in Chinese). 王运敏, 常前发. 金属矿山, 1999, 271(1), 1. 2 Tang Z H, Zhang M X, Zhang X F, et al. Journal of Non-Crystalline Solids, 2019, 513, 15. 3 Li L, Jiang T, Chen B J, et al. Process Safety and Environmental Protection, 2020, 139, 305. 4 Li R F, Zhou Y, Zheng Y, et al. Rare Metal Materials and Engineering, 2018, 47(1), 103(in Chinese). 李润丰, 周洋, 郑涌, 等. 稀有金属材料与工程, 2018, 47(1), 103. 5 Wang Y J. Study of foam ceramic prepared from high-sulfur ergo-gold tailings. Master’s Thesis, Wuhan University of Technology, China, 2016(in Chinese). 王亚婕. 金尾矿高硫选冶尾渣制备泡沫陶瓷. 硕士学位论文, 武汉理工大学, 2016. 6 Chi Y Z, Yu A M, Shen G Y, et al. China Ceramics, 2009, 45(10), 69(in Chinese). 池跃章, 余爱民, 沈光银, 等. 中国陶瓷, 2009, 45(10), 69. 7 Peng T E, Li H C, Liu Y L, et al. Ceramics, 2019, 12(14), 9 (in Chinese). 彭团儿, 李洪潮, 刘玉林, 等. 陶瓷, 2019, 12(14), 9. 8 Ji R, Zheng Y X, Zou Z H, et al. Construction and Building Materials, 2019, 215, 623. 9 Gao X Y. Study on low temperature sintering of environmentfriendly ceramics for lightweight and thermal insulation. Master’s Thesis, South China University of Technology, China, 2018(in Chinese). 高小云. 环保型轻质隔热陶瓷的低温烧成研究. 硕士学位论文, 华南理工大学, 2018. 10 Yu H H, Xue X X, Huang D W. The Chinese Journal of Nonferrous Metals, 2008, 18(11), 2076(in Chinese). 于洪浩, 薛向欣, 黄大威. 中国有色金属学报, 2008, 18(11), 2076. 11 Wang D H. Decoupling mechanical and wetting stability for robust superhydrophobic surfaces and application. Ph. D. Thesis, University of Electronic Science and Technology of China, China, 2020(in Chinese). 王德辉. 浸润性与机械稳定性拆分强化构筑超疏水表面及其应用研究. 博士学位论文, 电子科技大学, 2020. 12 Chen G S, Bao L N, Liu S X. Mineralogy fundamentals, Metallurgical Industry Press, China, 2010, pp. 135(in Chinese). 陈国山, 包丽娜, 刘树新. 矿石学基础, 冶金工业出版社, 2010, pp. 135. 13 Li X M, Sun D Y, Yang Q, et al. Journal of the European Ceramic Society, 2021, 41, 6330. 14 Zhang Y L. Fundamental research on preparation of high-temperature floamed ceramics. Master’s Thesis, South China University of Technology, China, 2014(in Chinese). 张勇林. 高温发泡陶瓷制备基础研究. 硕士学位论文, 华南理工大学, 2014. 15 Nasiri N A, Patra N, Ni N, et al. Journal of the European Ceramic Society, 2016, 36, 3293. 16 Wang H B, Sun Q Z. China Ceramics, 2019, 55(6), 36(in Chinese). 王海波, 孙青竹. 中国陶瓷, 2019, 55(6), 36. 17 Xi C P, Zhou J M, Zheng F, et al. Journal of Environmental Management, 2020, 261, 110197. 18 Wu Y X, Li D, Wei H T. Material Sciences, 2013, 36(3), 13 (in Chinese). 吴益雄, 李丹, 魏洪涛. 材料科学, 2013, 36(3), 13. 19 Bai Z M, Deng Z X. Physical chemistry of silicate, Chemical Industry Press, China, 2018, pp. 111 (in Chinese). 白志民, 邓雁希. 硅酸盐物理化学, 化学工业出版社, 2018, pp. 111. 20 Pei D J. Study on the mechanism and application of Si-Ca based multicomponent ceramics prepared from metallurgical slags. Ph. D. Thesis, University of Science and Technology Beijing, China, 2019 (in Chinese). 裴德健. 利用冶金渣制备硅钙基多元体系陶瓷的机理及应用研究. 博士学位论文, 北京科技大学, 2019. 21 Zhan H X, Lu G, Yan Q S, et al. Acta Materiae Compositae Sinica, 2021, 38(5), 1588(in Chinese). 占红星, 芦刚, 严青松, 等. 复合材料学报, 2021, 38(5), 1588. 22 Chen Z, Yan W, Schafföner W, et al. Journal of Alloys and Compounds, 2018, 764, 210. 23 Jacobson N S, Smialek J L. Journal of the American Ceramic Society, 1985, 68, 432. 24 Fox D S, Jacobson N S. Journal of the American Ceramic Society, 1988, 71, 128. 25 Xiao Z D, Xuan W D, Duan F M, et al. Foundry, 2021, 70(9), 1072(in Chinese). 肖祖德, 玄伟东, 段方苗, 等. 铸造, 2021, 70(9), 1072. 26 Lemougna P N, Yliniemi J, Adesanya E, et al. Minerals Engineering, 2020, 155, 106448. 27 Li Q J, Gong J Z, Xiao J S, et al. Journal of Wuhan Institute of Technology, 2022, 44(1), 60(in Chinese). 李沁键, 龚加志, 肖金坤 等. 武汉工程大学学报, 2022, 44(1), 60. 28 Wang Q Q. Study on porous thermal insulation ceramic composites prepared by low-grade potassium feldspar. Master’s Thesis, Xinyang Normal University, China, 2018(in Chinese). 王琦琦. 低品位钾长石制备多孔保温隔热陶瓷复合材料研究. 硕士学位论文, 信阳师范学院, 2018. 29 Rincon A, Desideri D, Bernarod E. Journal of Cleaner Production, 2018, 187, 250. 30 Wang H, Chen Z W, Liu L L, et al. Ceramics International, 2018, 44, 10078. 31 Rincon A, Desideri D, Bernarod E. Journal of Cleaner Production, 2018, 187, 250. |
|
|
|