| METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
| The Research Progress of Zirconium Alloy Uniform Corrosion Mechanism Models |
| PENG Danmin, SUN Zhipeng, HU Shuwei, ZHOU Mingyang, GAO Yang, QIU Xi, ZHANG Kun, LI Yuanming*
|
| National Key Laboratory of Nuclear Reactor Technology, Nuclear Power Institute of China, Chengdu 610213, China |
|
|
|
|
Abstract Zirconium (Zr) alloys are widely used as key structural materials for pressurized water reactor fuel cladding due to their low thermal neutron absorption cross section, excellent corrosion resistance and mechanical properties. The uniform corrosion behavior of Zr alloys is one of the most critical factors limiting the service life of nuclear power fuel cladding. Therefore, establishing uniform corrosion models for Zr alloys is crucial for analyzing the corrosion behavior and predicting the service life of cladding materials. The existing uniform corrosion models for Zr alloys can be mainly divided into empirical models based on experimental data fitting and mechanism models based on corrosion micro mechanisms. This paper summarizes the research progress of current empirical and mechanistic models for uniform corrosion of Zr alloys, analyzes the advantages and disadvantages of the models, and proposes improvement directions for model development, beneficial for the construction and optimization of independent long-term uniform corrosion models for advanced Zr alloys.
|
|
Published: 25 January 2026
Online: 2026-01-27
|
|
|
|
|
1 Wang K S, Ma L S, Yue Q, et al. Metal World, 2014(5), 38 (in Chinese). 王快社, 马林生, 岳强, 等. 金属世界, 2014(5), 38. 2 Cox B. Journal of Nuclear Materials, 2005, 336, 331. 3 Hillner E, Franklin D G, Smee J D. Journal of Nuclear Materials, 2000, 278(2-3), 334. 4 Motta A T, Gomes da Silva M J, Yilmazbayhan A, et al. In: Zirconium in the Nuclear Industry, 15th International Symposium, ASTM STP 1505, 2009, pp.486. 5 Motta A T, Couet A, Comstock R J. Annual Review of Materials Research, 2015, 45(1), 311. 6 Shi M H. Effects of nanocrystallzation of the corrosion properties of zirconium alloys. Master’s Thesis, Guangxi University, China, 2007(in Chinese). 石明华. 纳米级锆合金耐腐蚀性能研究. 硕士学位论文, 广西大学, 2007. 7 Liu C W. Investigation of irradiation behavior and corrosion properties of the N36 Zr alloy developed by China. Master’s Thesis, Xiamen University, China, 2016(in Chinese). 刘臣伟. 国产N36锆合金辐照行为及腐蚀性能研究. 硕士学位论文, 厦门大学, 2016. 8 Nagase F, Otomo T, Uetsuka H. Journal of Nuclear Science and Technology, 2003, 40(4), 213. 9 Kim H, Kim J H, Moon J Y, et al. Journal of Materials Science and Technology, 2010, 26(9), 827. 10 Garde A M Pan G, Atwood A R. In: Journal of ASTM International. Hyderabad Andhra Predesh. India, 2015. 11 Liu P, Du Z Z, Ma L S, et al. Materials Heat Treatment, 2011, 40(22), 22(in Chinese). 刘鹏, 杜忠泽, 马林生, 等. 材料热处理技术, 2011, 40(22), 22. 12 Zhang K, Guo X K, Liu Z H, et al. Nuclear Power Engineering, 2015, 36(S2), 93(in Chinese). 张坤, 郭兴坤, 刘振海, 等. 核动力工程, 2015, 36(S2), 93. 13 Miao Yifei, Jiao Yongjun, Zhang Kun, et al. Atomic Energy Science and Technology, 2018, 2(2), 290(in Chinese). 苗一非, 焦拥军, 张坤, 等. 原子能科学技术, 2018, 2(2), 290. 14 Xing Shuo, Zhang Kun, Chen Ping, et al. Atomic Energy Science and Technology, 2021, 55(11), 2048(in Chinese). 邢硕, 张坤, 陈平, 等. 原子能科学技术, 2021, 55(11), 2048. 15 Cox B, Kntsky V G, Lemaignan C, et al. In: International atomic energy agency. Vienna, Austria, 1998. 16 Cox B. In: Proc NATO ADV Research Workshop on Modelling Aqueous Corrosion. RNEC, Manadon, Plymouth, 1993, pp.183. 17 Cox B. In:Proc IAEA Tech Comm Mtg on the influence of water chemistry on fuel cladding behaviour, IAEA-TECDOC-927 Vienna, 1997, pp.91. 18 Motta A T, Lefebvre F, Lemaignan C. In:Zirconium in the nuclear industry 9th Int Symp, ASTM-STP-1132, 1991, pp.718. 19 Garden A M. In: Zirconium in the nuclear industry, 9th Int Symp, ASTM-STP-1132, 1991, pp.566. 20 Garzarolli F, Jorde D, Manzel R, et al. In: US Report NP-1472, electric power research Inst. Palo Alto, CA, 1980. 21 Billot P, Giordano A. In: Zirconium in the Nuclear Industry 9th Int Symp, ASTM-STP-1132. Kobe, 334, 1992, pp.539. 22 Billot P. In: Zirconium in the Nuclear Industry 8th Int Symp ASTM-STP-1023, 1990, pp.173. 23 Vanswam L, Shann S H. In: Zirconium in the Nuclear Industry, 9th Int Symp, ASTM-STP-1132, 1992. 24 Matpro. In: A handbook of materials properties for use in the analysis of light water reactor fuel rod behaviour. US Report TREE-NUREG-1180, Nuclear Regulatory Commission. Wash, DC, 1978. 25 Garzarolli F, Jung W, Schoenfeld H, et al. In: Waterside corrosion of Zircaloy fuel rods. U S Rep EPRI-NP-2789, Electric Power Research Institute. 1982. 26 Polley M V, Evans H E. In: US report TR-102826, Electric Power Research Institute. Palo Alto, CA, 1993. 27 Sabol G P, Correal-pulver O A, Weiner R A, et al. In: Paper presented at ANS 1994Int Topical Mtg on LWR Performance, April 17-21. West Palm Beach, Florida, 1994. 28 Polley M V. In: US report TR-105662, Electric Power Research Institute. Palo Alto, CA, 1995. 29 Pecheur D, Giordano A, Picard E, et al. In: 1997 proc technical committee mtg. on influence of water chemistry on fuel cladding behaviour. Rez, Czech Republic, 1997, pp.111. 30 Billot P, Beslu P, Robin J C. In: Fuel for the 90’s, (Int Topical Mtg on LWR Fuel Performance). Avignon, France, 1991, pp.757. 31 Billot P, Robin J C, Giordano A, et al. In: American society for testing and materials. W Conshohocken. 1994, pp. 351. 32 Cheng B, Gilmore P, Klepfer H H. In: Zirconium in the Nuclear Industry, 11th Int Symp, Garmisch-Partenkirchen, ASTM-STP-1295. Germany, 1996, pp.137. 33 Couet A, Mottaa A T, Ambard A. Corrosion Science, 2015, 100, 73. 34 Chao C Y, Lin L F, Macdonald D D. Journal of the Electrochemical Society, 1981, 128, 1187. 35 Pauporte T, Finne J. Journal of Applied Electrochemistry, 2006, 2006(36), 33. 36 Yu Z F, Kautz E, Zhang H L, et al. Acta Materialia, 2023, 253, 118956. 37 Couet A, Mottaa A T, Comstock R J. In: B. Comstock (Ed. ). 17th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1543. Hyderabad, India, 2013, pp.479. 38 Dykhuis Andrew F, Short Michael P. Corrosion Science, 2019, 146, 179. 39 Amma K, Appolaire B, Cailletaud G, et al. Computational Materials Science, 2009, 45(3), 800. 40 Gaston D R, Permann C J, Peterson J W, et al. Annals of Nuclear Energy, 2015, 84, 45. 41 Garzarolli F, Jung W, Shoenfeld H, et al. In: Union, AG and combustion engineering, Inc, Electric Power Research Institute. Palo Alto, CA, 1982. 42 Balluffi R W, Allen S M, Carter W C. Kinetics of materials, John Wiley & Sons, Inc., 2005. 43 Lin C, Ruan H, Shi S. npj Materials Degradation, 2020, 4, 22. 44 Ammar K, Appolaire B, Cailletaud G, et al. Materials Science, 2009, 45, 800. 45 Loeffel K, Anand L. International Journal of Plasticity, 2011, 27, 1409. 46 Beremin F M, Pineau A, Mudry F, et al. Metallurgical Transactions A, 1983, 14A(11), 2277. 47 Johnson A B. Revs on coatings and corrosion 4 (Ed Yahalom J) freund. Tel Aviv, 1975, pp.299. 48 Aryanfar A, Iii W G, Marian J. Corrosion Science, 2019, 158, 108058. 49 Zinkle S J, Was G S. Acta Materialia, 2013, 61(3), 735. |
|
|
|