| INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
| Study on Properties of CeO2-doped Rare Earth Tantalate Ceramics |
| LI Lingfeng1, SI Yaochen1, WANG Ruida1, LIU Guanghua2, ZHAO Shixian1,*, LI Hongxia1, LI Hongyu1
|
1 State Key Laboratory of Advanced Refractories, Sinosteel Luoyang Institute of Refractories Research Co., Ltd., Luoyang 471039, Henan, China 2 China United Gas Turbine Technology Co.,Ltd., Beijing 100016, China |
|
|
|
|
Abstract In order to meet the requirements of advanced aero engines for higher service temperature and better corrosion resistance of thermal barrier coatings, monochloric phase doped CeO2 rare earth tantalate oxides were prepared by doping cerium oxide (CeO2) in (Y0.5Gd0.5)TaO4 material system with different doping ratios, and were held at 1 750 ℃ for 5 h by high temperature solid phase reaction.The thermodynamic pro-perties, microstructure and corrosion resistance of the material to CaO-MgO-Al2O3-SiO2 (CMAS) were studied.The results show that: (ⅰ) Doped CeO2 high entropy rare earth tantalate ceramic material has low thermal conductivity (1.55 W·m-1·K-1).(ⅱ) Doped CeO2 high entropy rare earth tantalate ceramic material has ferroelastic phase transition, which helps to improve the fracture toughness of the material.(ⅲ) The low brittle-index (1.33 μm-1/2) of the material increases the sample loss tolerance, impeding the deformation and crack propagation of the material.(ⅳ) Doped CeO2 high-entropy rare earth tantalate material has excellent resistance to CMAS erosion.(ⅴ) Doped CeO2 rare earth tantalate ceramic material is a new thermal barrier coating material with great application potential.
|
|
Published: 25 January 2026
Online: 2026-01-27
|
|
|
|
|
1 Zhao Y S, Zhang M, Dai J W, et al. Materials Reports, 2023, 37(6), 73 (in Chinese). 赵云松, 张迈, 戴建伟, 等. 材料导报, 2023, 37(6), 73. 2 Liu Y, Zhang W, Wang W, et al. Ceramics International, 2024, 50, 49095. 3 Zhang H, Zhang H, Sang W, et al. Ceramics International, 2024, 50, 31726. 4 Wang J, Chen L, Zhang L, et al. Journal of the American Ceramic Society, 2024, 107(6), 3895. 5 Wang X, He Y X, Wang C, et al. Journal of the American Ceramic Society, 2022, 105, 4588. 6 Dai M, Xu Y, Peng F, et al. Journal of Alloys and Compounds, 2024, 988, 174343. 7 Dong N, Jin Y, Jiang G, et al. Ceramics International, 2024, 50, 48931. 8 Zhou Y X, Gan M D, Yu W, et al. Journal of the American Ceramic Society, 2021, 104(12), 6467. 9 Wang Y, Zhang W, Du J, et al. Journal of the European Ceramic Society, 2025, 45(3), 117038. 10 Ren K, Wang Q K, Shao G, et al. Scripta Materialia, 2020, 178, 382. 11 Wang J, Wu F S, Zou R A, et al. Journal of the American Ceramic Society, 2021, 104(11), 5873. 12 Wang J, Jin Q, Wu P, et al. Acta Materialia, 2025, 283, 120523. 13 Yang T, Wang W, Huang J, et al. Journal of the American Ceramic Society, 2023, 106(9), 5541. 14 Wei Z Y, Meng G H, Chen L, et al. Journal of Advanced Ceramics, 2022, 11(7), 985. 15 Jiang C, Hao W, Liu C, et al. Journal of Alloys and Compounds, 2025, 1010, 177185. 16 Wang C, Wang L, Lang Z, et al. Journal of Materials Engineering and Performance, 2025, 34, 2107. 17 Luo X W, Luo L R, Zhao X F, et al. Journal of the European Ceramic Society, 2022, 42(5), 2391. 18 Yang T, Wang W, Tang Z, et al. Ceramics International, 2024, 50, 42506. 19 Wang J, Chong X Y, Lv L, et al. Journal of Materials Science & Technology, 2023, 157, 98. 20 Li W Q, Zhou H X, Su H R, et al. Materials Reports, 2023, 37(Z2), 139 (in Chinese). 李文权, 周红霞, 苏浩然, 等. 材料导报, 2023, 37(Z2), 139. 21 Wu D, Yao Y, Shan X A, et al. Journal of the American Ceramic Society, 2021, 104(2), 1132. 22 Xia J, Yang L, Wu R T, et al. Applied Surface Science, 2019, 481, 860. 23 Yang T, Wang W, Tang Z, et al. Ceramics International, 2024, 50(5), 7218. |
|
|
|