| POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
| Synthesis and Electroluminescent Properties of Diquinoxalino Phenazine-based Delayed Fluorescence Material |
| TANG Lingjun1, ZHANG Bo1, LAN Hao1, CAO Yuanzhe1, YUAN Guo2, HU Yingyuan1, ZHAO Xin1,*
|
1 School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China 2 Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China |
|
|
|
|
Abstract Anovel red thermally activated delayed fluorescence (TADF) material, HTPA-TQC, was designed and synthesized by incorporating six triphenylamine (TPA) donor units at 2, 3, 8, 9, 14, and 15 positions of the receptor unit, diquinoxalino[2, 3-a:2′, 3′-c]phenazine (TQC), which possesses a large conjugated plane, strong rigidity, and strong electron-withdrawing properties. Studies show that HTPA-TQC exhibits twisted molecular structure with a dihedral angle of approximately 50°, and the separation and overlap of frontier molecular orbitals are well-ba-lanced. Consequently, it possesses a small singlet-triplet energy gap (ΔEST) and a high oscillator strength (f ). Transient spectroscopy reveals that the delayed fluorescence lifetime of HTPA-TQC is 7.85 μs, indicating typical delayed fluorescence characteristics. UV spectroscopy and solvent polarity experiments demonstrate a significant intramolecular charge transfer (ICT) effect in HTPA-TQC. Its photoluminescence emission wavelength reaches 579 nm, with a photoluminescence quantum yield (PLQY) of 65.38%. Devices based on HTPA-TQC successfully achieved red-light emission, with an emission wavelength of 608 nm and a maximum external quantum efficiency (EOEmax) of 0.19%.
|
|
Published: 10 January 2026
Online: 2026-01-09
|
|
|
|
|
1 Fan X, Hao X, Huang F, et al. Advanced Science, 2023, 10 (28), e2303504. 2 Xie F, Wu P, Zou S, et al. Advanced Electronic Materials, 2019, 6(1), 1900843. 3 Kothavale S, Kim S C, Cheong K, et al. Advanced Materials, 2023, 35(13), 2208602. 4 Wang D H, Xie F M, Wei H X, et al. Materials Reports, 2023, 37(4), 215(in Chinese). 王达浩, 谢凤鸣, 魏怀鑫, 等. 材料导报, 2023, 37(4), 215. 5 Yang T, Cheng Z, Li Z, et al. Advanced Functional Materials, 2020, 30(34), 2002681. 6 Tang C W, VanSlyke S A. Applied Physics Letters, 1987, 51(12), 913. 7 Zampetti A, Minotto A, Cacialli F. Advanced Functional Materials, 2019, 29(44), 1905825. 8 Wang K, Shi Y Z, Zheng C J, et al. ACS Applied Materials & Interfaces, 2018, 10(37), 31515. 9 Uoyama H, Goushi K, Shizu K, et al. Nature, 2012, 492(7428), 234. 10 Sereviius T, Skaisgiris R, Kreiza G, et al. The Journal of Physical Chemistry A, 2021, 125(7), 1637. 11 Yang M, Park I S, Yasuda T. Journal of the American Chemical Society, 2020, 142(46), 19468. 12 Yao J F, Li H Z, Wu P, et al. Materials Reports, 2023, 37(14), 228(in Chinese). 姚静锋, 李昊泽, 吴平, 等. 材料导报, 2023, 37(14), 228. 13 Yang T, Liang J, Cui Y, et al. Advanced Optical Materials, 2022, 11(1), 2201191. 14 Li Z, Yang D, Han C, et al. Angewandte Chemie International Edition, 2021, 60(27), 14846. 15 Liu J, Li Z, Hu T, et al. Advanced Optical Materials, 2022, 10(8), 2102558. 16 Zhou L, Wang H, Shi Y Z, et al. Chemical Engineering Journal, 2022, 440, 135775. 17 Zhang M, Zheng C, Wang K, et al. Advanced Functional Materials, 2021, 31(13), 2010100. 18 Im Y, Kim M, Cho Y J, et al. Chemistry of Materials, 2017, 29(5), 1946. 19 He J L, Kong F C, Sun B, et al. Chemical Engineering Journal, 2021, 424, 130470. 20 Wang H, Chen J X, Zhou L, et al. Materials Horizons, 2023, 10(8), 2997. 21 Kumsampao J, Chaiwai C, Chasing P, et al. Chemistry-an Asian Journal, 2020, 15(19), 3029. 22 Zhang T T, Gao H, Yang Y Q, et al. Materials Reports, 2023, 37(16), 223(in Chinese). 张婷婷, 高慧, 杨溢青, 等. 材料导报, 2023, 37(16), 223. 23 Wang H, Chen J, Zhang X, et al. Advanced Optical Materials, 2023, 11(17), 2300368. 24 Li C, Duan R, Liang B, et al. Angewandte Chemie International Edition, 2017, 56(38), 11525. 25 Zhao B, Wang H, Han C, et al. Angewandte Chemie, 2020, 132(43), 19204. 26 Meng G, Dai H, Wang Q, et al. Nature Communications, 2023, 14(1), 2394. 27 Kim H S, Cheon H J, Lee D, et al. Science Advances, 2023, 9(22), eadf1388. 28 Wallace A M, Curiac C. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 265, 107544. 29 Karuthedath S, Gorenflot J, Firdaus Y, et al. Nature Materials, 2020, 20(3), 378. 30 Goushi K, Yoshida K, Sato K, et al. Nature Photonics, 2012, 6(4), 253. 31 Lee H L, Jang H J, Lee J Y. Journal of Materials Chemistry C, 2020, 8(30), 10302. 32 Ali U, Han G, Yi Y. Advanced Theory and Simulations, 2022, 6(2), 2200725. 33 Zhang Y, Du C Z, Li J K, et al. Chinese Journal of Organic Chemistry, 2023, 43(5), 1645. 34 Sereviius T, Skaisgiris R, Fiodorova I, et al. Journal of Materials Che-mistry C, 2021, 9(3), 836. 35 Elgrishi N, Rountree K J, McCarthy B D, et al. Journal of Chemical Education, 2017, 95(2), 197. 36 Huo Y, Lv J, Xie Y, et al. ACS Applied Materials & Interfaces, 2022, 14(51), 57092. 37 Liu T T, Yan Z P, Hu J J, et al. ACS Applied Materials & Interfaces, 2021, 13(47), 56413. |
|
|
|