| METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
| Effect of Ce on Microstructure and Tensile Properties of In-situ Synthesized TiB2/6061 Composites |
| JIA Jing, ZHUANG Weibin*, LI Jinghui, CAO Qing, LIU Jingfu
|
| School of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, Liaoning, China |
|
|
|
|
Abstract In-situ synthesized 3% TiB2/6061 composites and 0.3% Ce-3% TiB2/6061 composites were fabricated by Al-K2TiF6-KBF4 system. The microstructure of the composites was observed with SEM and TEM, and the mechanical properties of the composites were tested by room temperature tensile testing. The effect of Ce on the microstructure and tensile properties of in-situ synthesized TiB2/6061 composites was studied. Microstructure observation reveals that the interface between TiB2 particles and 6061 matrix is clean and the interfacial bonding is stable. Ce effected the final morphology of TiB2 particles by adsorbing on different crystal planes, chamfering planes and arc corners appeared on the surface of TiB2 particles. The addition of Ce alleviated particle agglomeration, the size of particle agglomeration decreased by 38.68% and the grain size of the composites decreased, with an average grain size decreased by 56.50%. The tensile test shows that the tensile properties of the 3% TiB2/6061 composites are significantly improved by the addition of Ce, with YS increased by 66.71%, UTS increased by 35.22%, and EL increased by 17.59%. There are three main strengthening mechanisms in the composites: fine-grain strengthening, Orowan strengthening, and thermal expansion strengthening.
|
|
Published: 10 January 2026
Online: 2026-01-09
|
|
|
|
|
1 Feng J, Han Y F, Han X C, et al. Journal of Materials Science & Technology, 2023, 156, 72. 2 Wang R F, Guo W G, Liu L T, et al. Journal of Materials Research and Technology 2023, 23, 191. 3 Nie J F, Fan Y, Zhao L, et al. Materials Reports, 2021, 35(9), 9009 (in Chinese). 聂金凤, 范勇, 赵磊, 等. 材料导报, 2021, 35(9), 9009. 4 Huang J C, Xiang Z L, Tang Y C, et al. Materials Chemistry and Physics, 2023, 301, 127561. 5 Zhang H, Liu F Y, Guo E Y, et al. Acta Materiae Compositae Sinica, 2023, 40(12), 6819 (in Chinese). 张虎, 刘福源, 郭恩宇, 等. 复合材料学报, 2023, 40(12), 6819. 6 Jin P, Liu Y, Li S, et al. Materials Reports, 2009, 23(11), 24 (in Chinese). 金鹏, 刘越, 李曙, 等. 材料导报, 2009, 23(11), 24. 7 Wu W G, Zeng T C, Hao W F, et al. Frontiers in Materials, 2022, 9, 817376. 8 Wang H W, Zhao D C, Wang M L. Acta Metallurgica Sinica, 2022, 58(4), 428 (in Chinese). 王浩伟, 赵德超, 汪明亮. 金属学报, 2022, 58(4), 428. 9 Ma S, Wang M, Wu Y, et al. Materials Science and Engineering: A, 2024, 891, 145969. 10 Zhuang W B, Yang H R, Yang W B, et al. Journal of Materials Engineering and Perform, 2021, 30(10), 7730. 11 Zhao M, Jiang L T, Wu G H. Materials Reports, 2008(6), 28 (in Chinese). 赵敏, 姜龙涛, 武高辉. 材料导报, 2008(6), 28. 12 Xue J, Wu W Y, Ma J B, et al. Science and Engineering of Composite Materials, 2021, 28(1), 73. 13 Agrawal S, Ghose A K, Chakrabariy I. Materials & Design, 2017, 113, 195. 14 Liu Z W, Dong Z W, Cheng X L, et al. Metallurgical and Materials Transactions A, 2018, 49(11), 5585. 15 Wu Y H, Liu B X, Kang H J, et al. Materials Science and Engineering A, 2022, 840, 142958. 16 Wang J, Chen G, Zhang J X, et al. Materials Research Express, 2019, 6(10), 106599. 17 Xue J, Han Y F, Wang J, et al. Materials Science and Technology, 2013, 29(11), 1373. 18 Zhao K, Kang H J, Wu Y H, et al. Materials Letters, 2020, 262, 127063. 19 Zhuang W, Jia J, Liu J, et al. Journal of Molecular Structure, 2024, 1301, 137423. 20 Yang S, Zhang R Y, Liu H, et al. Journal of Materials Research and Technology, 2020, 9(4), 7047. 21 Wang T M, Zheng Y P, Chen Z N, et al. Materials & Design, 2014, 64, 185. 22 Sun J, Zhang X B, Zhang Y J, et al. Micron, 2015, 70, 21. 23 Zhang C, Dang Q, Liu G H, et al. Materials Reports, 2023, 37(3), 106 (in Chinese). 张弛, 党乾, 刘国怀, 等. 材料导报, 2023, 37(3), 106. 24 Lu B, Li A M, Rao Y, et al. Materials Reports, 2022, 36(19), 139 (in Chinese). 卢博, 李安敏, 饶宇, 等. 材料导报, 2022, 36(19), 139. 25 Qu M, Liu X, Cui Y, et al. Journal of Materials Engineering, 2018, 46(3), 98 (in Chinese). 屈敏, 刘鑫, 崔岩, 等. 材料工程, 2018, 46(3), 98. 26 Zhao Y F. Research on structures and properties of in-situ A356-TiB2-La composites. Master's Thesis, Dalian University of Technology, China, 2016 (in Chinese). 赵玉飞. 原位自生A356-TiB2-La复合材料组织性能研究. 硕士学位论文, 大连理工大学, 2016. 27 Zhang T T, Feng K, Li Z G, et al. Applied Surface Science, 2020, 530, 147051. 28 Xue J, Wu W, Ma J, et al. Materials Science and Engineering: A, 2020, 786, 139416. 29 Niu G, Mao J, Wang J. Metallurgical and Materials Transactions A, 2019, 50, 5935. 30 中国钢铁工业协会. GB/T 2281-2021. 中国标准书号. 北京: 中国标准出版社, 2021. 31 Zheng Y Q, Shi E W, Li W J, et al. Journal of Inorganic Materials, 1999, (3), 321 (in Chinese). 郑燕青, 施尔畏, 李汶军, 等. 无机材料学报, 1999, (3), 321. 32 Xue Y, Li B, Wang X, et al. Materials Today Communications, 2021, 28, 102625. 33 Sun J, Wang X, Guo L, et al. Journal of Materials Research, 2019, 34(7), 1258. 34 O. H E. Proceedings of the Physical Society Section B, 1951, 64(9), 747. 35 Armstrong R W. Engineering Fracture Mechanics, 1987, 28(5), 529. 36 Ding W, Cheng Y, Chen T, et al. Research and Application of Materials Science, 2020, 2(1), 23. 37 Youssef Y M, Dashwood R J, Lee P D. Composites Part A, 2005, 36(6), 747. |
|
|
|