INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Research Progress on Transition Metal Dichalcogenides Based SERS and Food Safety Detection Application |
GAO Chao1, XIE Huaijin1, GAO Xiaoqing2, HAN Yingdong2,*
|
1 School of Inspection and Testing Certification, Changzhou Vocational Institute of Engineering, Changzhou 213164, Jiangsu, China 2 College of Science, Civil Aviation University of China, Tianjin 300300, China |
|
|
Abstract Surface enhanced Raman spectroscopy (SERS) technology has attracted widespread research interest since its discovery due to its advantages such as fingerprint recognition, low detection limit, high sensitivity, easy operation, and the ability to detect onlineor offline. It mainly enhances the Raman signal of the target detection object exponentially by preparing and processing special substrates, effectively solving the problem of weak Raman scattering intensity, and even at the single-molecule detection level. Recently, transition metal dichalcogenides (TMDs) based SERS substrates have shown impressive advantages such as high molecular compatibility and anti-fluorescence. Their enhancement mechanism for Raman signals is also different from traditional precious metal substrates. Therefore, researchers have conducted extensive research from the perspectives of enhancement mechanism, structural regulation, SERS performance, and applications. This article summarizes the research progress of TMDs based SERS, by introducing the development process and classification of SERS substrates, the structural control methods and performance, the application progress of transition metal sulfide SERS in food safety. Finally proposes the main problems and application development prospects.
|
Published: 10 May 2025
Online: 2025-04-28
|
|
|
|
1 Raman C V, Krishna K S. Nature, 1928, 121, 501. 2 Pan J, Lv M, Bai H, et al. Energy & Fuels, 2017, 31, 1136. 3 Fleischmann M, Hendra P J, McQuillan A J. Chemical Physics Letters, 1974, 26, 163. 4 Jeanmaire D L, Van Duyne R P. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977, 84, 1. 5 Awiaz G, Lin J, Wu A. Exploration, 2023, 3, 20220072. 6 Pham X H, Hahm E, Kim T H, et al. Nano Research, 2020, 13, 3338. 7 Wang J, Wu X, Wang C, et al. ACS Applied Materials & Interfaces, 2016, 8, 19958. 8 Fan M, Lai F J, Chou H L, et al. Chemical Science, 2013, 4, 509. 9 Liu K, Bai Y, Zhang L, et al. Nano Letters, 2016, 16, 3675. 10 Zhao X, Deng M, Rao G, et al. Small, 2018, 14, 1802477. 11 Lv Y, Sun H, Lian X, et al. Applied Surface Science, 2022, 64, 154594. 12 Li L, Jiang R, Shan B, et al. Nature Communications, 2022, 13, 5249. 13 Zhao Y X, Zheng Z X, Zhang L S, et al. Physical Chemistry Chemical Physics, 2023, 25, 15209. 14 Zhou Y, Gu Q, Qiu T, et al. Angewandte Chemie, 2021, 133, 26464. 15 Qin L, Tang M, Shen H, et al. Chemical Engineering Journal, 2023, 466, 143262. 16 Nie S, Emory S R. Science, 1997, 275, 1102. 17 Wang X, Guo L. Angewandte Chemie International Edition, 2020, 59, 4231. 18 Song G, Gong W, Cong S, et al. Angewandte Chemie International Edition, 2021, 60, 5505. 19 Liu X, Dang A, Li T, et al. ACS Sensors, 2023, 8, 1287. 20 Sarycheva A, Makaryan T, Maleski K, et al. Journal of Physical Chemistry C, 2017, 121, 19983. 21 Tyagi N, Sharma Gaurav, Kumar D, et al. Coordination Chemistry Reviews, 2023, 496, 215394. 22 Wang Q, Kalantar-Zadeh K, Kis A, et al. Nature Nanotechnology, 2012, 7, 699. 23 Gao C, Han Y, Zhang K, et al. Advanced Science, 2020, 7, 2002444. 24 Wen S, Jiang W, Yang Y, et al. Journal of Physical Chemistry C, DOI: 10. 1021/acs. jpcc. 4c00844. 25 Li A, Lin J, Huang Z, et al. IScience, 2018, 10, 1. 26 Chen M, Liu Dong, Du X, et al. TrAC Trends in Analytical Chemistry, 2020, 130, 115983. 27 Chrysos M, Verzhbitskiy I A. Physical Review A, 2010, 81, 042705. 28 Lombardi J R, Birke R L. Journal of Physical Chemistry C, 2014, 118, 11120. 29 Weng C, Luo Y, Wang B, et al. Journal of Materials Chemistry C, 2020, 8, 14138. 30 Lee Y, Kim H, Lee J, et al. Chemistry of Materials, 2016, 28, 180. 31 Li M, Gao Y, Fan X, et al. Nanoscale Horizons, 2021, 6, 186. 32 Lei Z, Wu D, Cao X, et al. Journal of Alloys and Compounds, 2023, 937, 168294. 33 Liu D, Chen X, Y Hu, et al. Nature Communications, 2018, 9, 193. 34 Singh J, Kumar S, Soni R K, et al. Journal of Alloys and Compounds, 2020, 849, 156502. 35 Wu D, Chen J, Ruan Y, et al. Journal of Materials Chemistry C, 2018, 6, 12547. 36 Sun L, Hu H, Zhan D, et al. Small, 2014, 10, 1090. 37 Yan D, Qiu W, Chen X, et al. Journal of Physical Chemistry C, 2018, 122, 14467. 38 Zuo P, Jiang L, Li X, et al. Nanoscale, 2019, 11, 485. 39 Zheng Z, Cong S, Gong W, et al. Nature Communications, 2017, 8, 1993. 40 Liu Y, Gao Z, Chen M, et al. Advanced Functional Materials, 2018, 28, 1805710. 41 Yin Y, Miao P, Zhang Y, et al. Advanced Functional Materials, 2017, 27, 1606694. 42 Song X, Wang Y, Zhao F, et al. ACS Nano, 2019, 13, 8312. 43 Tao L, Chen K, Chen Z, et al. Journal of the American Chemical Society, 2018, 140, 8696. 44 Lee H K, Lee Y H, Koh C S L, et al. Chemical Society Reviews, 2019, 48, 731. 45 Guselnikova O, Lim H, Kim H J, et al. Small, 2022, 18, 2107182. 46 Losurdo M, Bergmair I, Dastmalchi B, et al. Advanced Functional Materials, 2014, 24, 1864. 47 Man B, Wang G, Li Z, et al. Journal of Alloys and Compounds, 2022, 902, 163789. 48 Li M, Wei Y, Fan X. et al. Nano Research, 2022, 15, 637. 49 Liu Y, Kim M, Seunghee H, et al. Nanotoday, 2021, 37, 101063. 50 Dandu M, Watanabe K, Taniguchi T, et al. ACS Photonics, 2020, 7, 519. 51 Wang F, Wang J, Guo S, et al. Scientific Reports, 2017, 7, 44712. 52 Bernat A, Samiwala M, Albo J, et al. Journal of Agricultural and Food Chemistry, 2019, 67, 12341. 53 Nilghaz A, Mahdi Mousavi S, Amiri A, et al. Journal of Agricultural and Food Chemistry, 2022, 70, 5463. 54 Xu M L, Gao Y, Han X X, et al. Journal of Agricultural and Food Chemistry, 2017, 65, 6719. 55 Fu X, Wu H, Liu Z, et al. ACS Applied Nano Materials, 2024, 7, 3988. 56 Quan Y, Tang X H, Shen W, et al. Advanced Optical Materials, 2022, 10, 2201395. 57 Su R, Yang S, Han D, et al. Journal of Colloid and Interface Science, 2023, 635, 1. 58 Jiang L, Xiong S, Yang S, et al. Ceramics International, 2023, 49, 19328. 59 Li C, Yu J, Xu S, et al. Advanced Materials Technologies, 2018, 3, 1800174. 60 Zhai Y, Yang H, Zhang S, et al. Journal of Materials Chemistry C, 2021, 9, 6823. 61 He M, Li Z, Guo Y, et al. Advanced Sustainable Systems, 2023, 7, 2200387. |
|
|
|