INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Design Principle and Research Progress of Radar/Infrared Compatible Stealth Materials |
CHEN Yicheng1, TU Jianyong2, LI Xin3,*, FAN Xiaomeng3,*
|
1 AECC Sichuan Gas Turbine Research Establishment, Chengdu 610500, China 2 Xi'an Xinyao Ceramic Composite Materials Co., Ltd., Xi'an 710117, China 3 Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, China |
|
|
Abstract Recently, modern military detection technology and precision-guided weapons have developed rapidly. The wide application of radar and infrared detection and guidance methods has promoted radar/infrared compatible stealth materials to a research hotspot in the field of stealth materials. The fundamental differences in detection principle of radar and infrared detection leads to completely different requirements for the electromagnetic properties of stealth materials in the two bands. Researchers use the difference in the wavelength of the two bands to achieve differentiated response to electromagnetic waves, and carry out the design of radar/infrared compatible stealth materials. In this paper, the basic theory and design principle of radar/infrared stealth are systematically expounded, the research progress of radar/infrared compatible stealth materials is reviewed, and the future development direction is prospected.
|
Published: 25 March 2025
Online: 2025-03-24
|
|
|
|
1 Wang Z R, Yu D B, Sun X Q, et al. Laser & Infrared, 2001, 31(5), 301 (in Chinese). 王自荣, 余大斌, 孙晓泉, 等. 激光与红外, 2001, 31(5), 301. 2 Ma C Y, Cheng H F, Tang G P, et al. Materials Reports, 2007, 21(1), 126 (in Chinese). 马成勇, 程海峰, 唐耿平, 等. 材料导报, 2007, 21(1), 126. 3 Zhou Y, Chen C J. National Defense Science & Technology, 2003(7), 12 (in Chinese). 周义, 陈长君. 国防科技, 2003(7), 12. 4 Chen H Q, Wang L Y, Liu G. Aerodynamic Missile Journal, 2019(7), 37 (in Chinese). 陈海青, 汪刘应, 刘顾. 飞航导弹, 2019(7), 37. 5 Qin F, Brosseau C. Journal of Applied Physics, 2012, 111(6), 4. 6 Cao M S, Song W L, Hou Z L, et al. Carbon, 2010, 48(3), 788. 7 Fan J C, Yuan W F, Zhou A G. Advanced Ceramics, 2022, 43(1), 1 (in Chinese). 樊嘉诚, 袁文凤, 周爱国. 现代技术陶瓷, 2022, 43(1), 1. 8 Peng L. Design, fabrication and characterization of the multilayer film based spectrally selective emission material for infrared stealth. Ph. D. Thesis, National University of Defense Technology, China, 2019 (in Chinese). 彭亮. 光谱选择性发射红外隐身多层膜的设计、制备与性能研究. 博士学位论文, 国防科技大学, 2019. 9 Zhang M. Research on fabrication and infrared radiation properties of ZrB2 thin films. Ph. D. Thesis, University of Electronic Science and technology, China, 2021 (in Chinese). 张敏. 硼化锆薄膜的制备与红外辐射特性研究. 博士学位论文, 电子科技大学, 2021. 10 Du Y F. Preparation and properties study of infrared microwave-compatible materials. Ph. D. Thesis, Beijing Jiaotong University, China, 2010 (in Chinese). 杜玙璠. 红外微波兼容材料的制备及性能研究. 博士学位论文, 北京交通大学, 2010. 11 Chen Z W, Fan X M, Huang X X, et al. Advanced Ceramics, 2020, 41(Z1), 1 (in Chinese). 陈政伟, 范晓孟, 黄小萧, 等. 现代技术陶瓷, 2020, 41(Z1), 1. 12 Ruan Y Z. Radar cross section and stealth technology, National Defence Industry Press, China, 1998 (in Chinese). 阮颖铮. 雷达截面与隐身技术, 国防工业出版社, 1998. 13 Deng H W, Zhao C S, Jia D B, et al. Aeroengine, 2014, 40(2), 10 (in Chinese). 邓洪伟, 赵春生, 贾东兵, 等. 航空发动机, 2014, 40(2), 10. 14 Liu H T, Cheng H F, Wang J, et al. Materials Reports, 2009, 23(19), 24 (in Chinese). 刘海韬, 程海峰, 王军, 等. 材料导报, 2009, 23(19), 24. 15 Yang Q Z, Wang H M, Chang Z H. Aerospace Electronic Warfare, 2004(6), 55 (in Chinese). 杨青真, 王红梅, 常泽辉. 航天电子对抗, 2004(6), 55. 16 Xiang Y C, Qu C W, Ping D F, et al. Ship Electronic Engineering, 2010(2), 103 (in Chinese). 向迎春, 曲长文, 平殿发, 等. 舰船电子工程, 2010(2), 103. 17 Sang J H, Zhang Z B. Infrared and Laser Engineering, 2013, 42(1), 14 (in Chinese). 桑建华, 张宗斌. 红外与激光工程, 2013, 42(1), 14. 18 Hou Z N. Ome Information, 2001(11), 41 (in Chinese). 侯振宁. 光机电信息, 2001(11), 41. 19 Chen H. Infrared physics, National Defence Industry Press, China, 1985 (in Chinese). 陈衡. 红外物理学, 国防工业出版社, 1985. 20 Fu W. Infrared and Laser Engineering, 2002, 31(1), 88 (in Chinese). 付伟. 红外与激光工程, 2002, 31(1), 88. 21 Jiang Y T, Wang Y. Infrared Technology, 2003, 25(5), 7 (in Chinese). 蒋耀庭, 王跃. 红外技术, 2003, 25(5), 7. 22 Wang K, Tian H Y, Yang W, et al. Advanced Ceramics, 2023, 44(2), 77 (in Chinese). 王康, 田洪翼, 杨威, 等. 现代技术陶瓷, 2023, 44(2), 77. 23 Guo T C. Research on high temperature infrared emissivity modulation of ZnO-based materials and infrared-radar compatible stealth properties. Ph. D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2020 (in Chinese). 郭腾超. ZnO基材料高温红外发射率调控机制及红外/雷达兼容特性研究. 博士学位论文, 南京航空航天大学, 2020. 24 Li X. Preparation and performance of BaxSr1-xAl2Si2O8 ceramic-based radar/infrared compatible stealth materials. Ph. D. Thesis, Northwestern Polytechnical University, China, 2023 (in Chinese). 李鑫. BaxSr1-xAl2Si2O8陶瓷基雷达/红外兼容隐身材料制备及性能. 博士学位论文, 西北工业大学, 2023. 25 Wang G, Li C F, Estevez D, et al. Nano-Micro Letters, 2023, 15(1), 152. 26 Tian Y, Estevez D, Wei H J, et al. Chemical Engineering Journal, 2021, 421, 129781. 27 Luo H J, Fan X M, Tu J Y, et al. Applied Surface Science, 2023, 609, 155284. 28 Xu S Q, Duan Y F. Journal of Air Force Radar Academy, 2001(1), 45 (in Chinese). 徐生求, 段永法. 空军雷达学院学报, 2001(1), 45. 29 Tian Y, Estevez D, Wang G, et al. Carbon, 2024, 218, 118614. 30 Lv H L, Ji G B, Li X G, et al. Journal of Magnetism and Magnetic Materials, 2015, 374, 225. 31 Li X G, Ji G B, Lv H L, et al. Journal of Magnetism and Magnetic Materials, 2014, 355, 65. 32 Pan W L, He M, Bu X H, et al. Journal of Materials Science:Materials in Electronics, 2017, 28(12), 8601. 33 Zhao Y Z, Xu M, Li L, et al. Vacuum and Cryogenics, 2009(3), 178 (in Chinese). 赵印中, 许旻, 李林, 等. 真空与低温, 2009(3), 178. 34 Wang Z R, Yu D B. Infrared Technology, 1999, 21(1), 41 (in Chinese). 王自荣, 余大斌. 红外技术, 1999, 21(1), 41. 35 Qu S Y. Research on theories. and experiments of infrared stealthy ZnO material with low-emissivity. Master's Thesis, Xi'an University of Electronic Technology, China, 2012 (in Chinese). 瞿诗瑜. 低发射率ZnO红外隐身材料的理论与实验研究. 硕士学位论文, 西安电子科技大学, 2012. 36 Su X L, Jia Y, Liu X Q, et al. Ceramics International, 2014, 40(4), 5307. 37 Shu R W, Xing H L, Cao X L, et al. Nano, 2015, 11(4), 1650047. 38 Zhang Z Y, Xu M Z, Ruan X F, et al. Ceramics International, 2017, 43(3), 3443. 39 Yang Y F, Liu M J. Engineering Plastics Application, 2002(7), 57 (in Chinese). 杨永芳, 刘敏江. 工程塑料应用, 2002(7), 57. 40 Yang C C, Gung Y J, Hung W C, et al. Composites Science and Technology, 2010, 70(3), 466. 41 Zhou Y K, Wang Y S, He D W, et al. Journal of Nanoscience and Nanotechnology, 2014, 14(5), 3417. 42 Wang X K, Zhao F, Wang J J. Infrared, 2019, 40(7), 1 (in Chinese). 汪心坤, 赵芳, 王建江. 红外, 2019, 40(7), 1. 43 Yan L L, Wang X X, Zhao S C, et al. ACS Applied Materials & Interfaces, 2017, 9(12), 11116. 44 Wang Y, Zhang W Z, Wu X M, et al. Synthetic Metals, 2017, 228, 18. 45 Fleming J G, Lin S Y, El-Kady I, et al. Nature, 2002, 417(6884), 52. 46 Gao Y F, Shi J M, Zhao D P, et al. Infrared and Laser Engineering, 2012, 41(4), 970 (in Chinese). 高永芳, 时家明, 赵大鹏, 等. 红外与激光工程, 2012, 41(4), 970. 47 Wang X, Hu X H, Li Y Z, et al. Applied Physics Letters, 2002, 80(23), 4291. 48 Zhang J K, Liu R H, Zhao D P, et al. Optical Materials Express, 2019, 9(1), 195. 49 Li W, Song T, Wang K, et al. Advanced Ceramics, 2023, 44(4), 245 (in Chinese). 李魏, 宋涛, 王坤, 等. 现代技术陶瓷, 2023, 44(4), 245. 50 Wang Z X, Cheng Y Z, Nie Y, et al. Journal of Applied Physics, 2014, 116(5), 054905. 51 Zhang J K, Shi J M, Zhao D P, et al. Infrared Physics & Technology, 2017, 85, 62. 52 程立, 李志刚, 陈宗胜, 等. 中国专利, CN112346163A, 2021. 53 Meng Z, Li G D, Cui G Z, et al. Materials Reports, 2023, 37(21), 5 (in Chinese). 孟真, 李广德, 崔光振, 等. 材料导报, 2023, 37(21), 5. 54 Landy N I, Sajuyigbe S, Mock J J, et al. Physical Review Letters, 2008, 100(20), 207402. 55 Yu N F, Genevet P, Kats M A, et al. Science, 2011, 334(6054), 333. 56 Li X, Xiao S Y, Cai B G, et al. Optics Letters, 2012, 37(23), 4940. 57 Tian H, Liu H T, Cheng H F. Chinese Physics B, 2014, 23(2), 025201. 58 Gao Z Q, Fan Q, Tian X X, et al. Optical Materials, 2021, 112, 110793. 59 Zhang C L, Wu X Y, Huang C, et al. Advanced Materials Technologies, 2019, 4(8), 1900063. 60 Zhong S M, Wu L J, Liu T J, et al. Optics Express, 2018, 26(13), 16466. 61 Feng X D, Xie X, Pu M B, et al. Optics Express, 2020, 28(7), 9445. 62 Kim J, Han K, Hahn J W. Scientific Reports, 2017, 7(1), 6740. 63 Huang Y J, Pu M B, Zhao Z Y, et al. Optics Communications, 2018, 407, 204. 64 Phan L, Walkup Iv W G, Ordinario D D, et al. Advanced Materials, 2013, 25(39), 5621. 65 Kim T, Bae J Y, Lee N, et al. Advanced Functional Materials, 2019, 29(10), 1807319. 66 Zhu H Z, Li Q, Tao C N, et al. Nature communications, 2021, 12(1), 1805. 67 Cui T J, Qi M Q, Wan X, et al. Light:Science & Applications, 2014, 3(10), e218. 68 Pang Y, Li Y, Yan M, et al. Optics Express, 2018, 26(9), 11950. |
[1] |
YANG Shiguan, CHEN Shuquan, WANG Jian, HE Junsong, CHENG Lin, ZHAI Lijun, LIU Hongxia, ZHANG Yan, SUN Zhigang. Study on Transient Cooling Law of Thermoelectric Cooler Based on Bismuth Telluride[J]. Materials Reports, 2025, 39(6): 24020052-16. |
|
|
|
|