INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Research Progress on Improvingthe Energy Storage of Bismuth Sodium Titanate Based Ceramics |
ZHOU Naiji, WU Xiusheng*, WEN Hongjuan, SHI Sijia, CAO Jufang
|
School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230009, China |
|
|
Abstract Ceramic capacitors have been widely studied due to their advantages such as high energy storage density, fast high-power charging and discharging rates, and low cost, making them have potential applications in pulse power technology energy storage systems. Although lead-containing ceramic capacitors exhibit excellent performance, lead has potential hazards to the environment and human health. Therefore, the development of lead-free dielectric capacitors has become a focus of material research in this field. Sodium bismuth titanate (BNT) stands out among many lead-free dielectric energy storage materials due to its high polarization ability. However, due to the large internal domain size and strong interaction forces between domains, after removing the electric field, the domains cannot quickly recover, resulting in a large residual polarization. In addition, the low breakdown field strength of BNT ceramics and the volatilization of Bi3+ and Na+ during the preparation process lead to heterogeneity in microstructure and composition, all of which affect the energy storage performance of the material. This article reviews the methods for improving the energy storage performance of BNT ceramics in recent years from five aspects:enhancing relaxation effect, improving breakdown field strength, regulating phase composition, adopting defect engineering strategy, and designing multi-layer structure. These methods are comprehensively analyzed, with useful information providedfor the modification of BNT-based energy storage ceramics.
|
Published: 25 March 2025
Online: 2025-03-24
|
|
|
|
1 Shi P, Zhu X P, Lou X J, et al. Chemical Engineering Journal, 2022, 428, 132612. 2 Xu C H. Design of antiferroelectric ceramics for pulse capacitors and research on their charging and discharging behavior. Ph. D. Thesis, University of Chinese Academy of Sciences (Chinese Academy of Sciences Shanghai Silicate Research Institute), China, 2018(in Chinese). 徐晨洪. 脉冲电容器用反铁电陶瓷设计及其充放电行为研究. 博士学位论文, 中国科学院大学(中国科学院上海硅酸盐研究所), 2018. 3 Song S Y, Liu J S, Wang H C , et al. Journal of Alloys and Compounds, 2023, 966, 171602. 4 Qin X F. Optimization of energy storage characteristics of PZT based SiO2 composite ceramics applied to pulse power technology. Master's Thesis, Chongqing University of Science and Technology, China, 2012 (in Chinese). 秦晓凤. 应用于脉冲功率技术的PZT基SiO2复合陶瓷储能特性优化. 硕士学位论文, 重庆科技学院, 2021. 5 Li H, Lv F, Lin F C, et al. Intense Laser and Particle Beams, 2012, 24(3), 554(in Chinese). 李化, 吕霏, 林福昌等. 强激光与粒子束, 2012, 24(3), 554. 6 Wang Q F. Exploration and research on compact repetitive frequency pulse power source. Ph. D. Thesis, Southwest Jiaotong University, China, 2011(in Chinese). 王庆峰. 紧凑型重复频率脉冲功率源的探索研究. 博士学位论文, 西南交通大学, 2011. 7 Wang Y. Electrical Technology, 2009(4), 5(in Chinese). 王莹. 电气技术, 2009(4), 5. 8 Zheng J Y, He W. Mechanical and Electrical Engineering, 2008(4), 1(in Chinese). 郑建毅, 何闻. 机电工程, 2008(4), 1. 9 Zhu X G. Research on IGBT series parallel technology in pulse power systems. Master's Thesis, Southwest Jiaotong University, China, 2020 (in Chinese). 朱晓光. 脉冲功率系统中IGBT串并联技术研究. 硕士学位论文, 西南交通大学, 2020. 10 Wu J G, Zheng T. Electronic ceramic materials and devices, Chemical Industry Press, China, 2022, pp. 161(in Chinese). 吴家刚, 郑婷. 电子陶瓷材料与器件, 化学工业出版社, 2022, pp. 161. 11 Jiang W H. Intense Laser and Particle Beam, 2013, 25(3), 537 (in Chinese). 江伟华. 强激光与粒子束, 2013, 25(3), 537. 12 Jiang Z H. Energy storage mechanism and performance study of bismuth sodium titanate based relaxor ferroelectric ceramic materials. Ph. D. Thesis, University of Electronic Science and Technology of China, China, 2022 (in Chinese). 蒋泽华. 钛酸铋钠基弛豫铁电陶瓷材料的储能机理及性能研究. 博士学位论文, 电子科技大学, 2022. 13 Wang Y. High power pulse power supply, Atomic Energy Press, China, 1991, pp. 159(in Chinese). 王莹. 高功率脉冲电源, 原子能出版社, 1991, pp. 159. 14 Mahmoud M, Ramadan M, Olabi A G, et al. Energy Conversion and Management, 2020, 210, 112670. 15 Li R M. Chinese Science and Technology Information, 2006(7), 290 (in Chinese). 李锐敏. 中国科技信息, 2006 (7), 290. 16 Mcnab I R. IEEE Transactions on Magnetics, 2001, 37(1), 375. 17 Li L S, Fan P Y, Wang M Q, et al. Journal of Physics D-Applied Physics, 2021, 54(29), 3001. 18 Zhao P Y, Zhu C Q, Li L T, et al. Journal of Advanced Ceramics, 2021, 10(6), 1153. 19 Yang L T, Kong X, Li F, et al. Progress in Materials Science, 2019, 102, 72. 20 Guo F, Shi Z F, Yang B, et al. Scripta Materialia, 2020, 184, 52. 21 Chen J Y, Tang Z H, Yang B, et al. Journal of Materials Chemistry A, 2020, 8(16), 8010. 22 Shao T Q, Du H L, Ma H, et al. Journal of Materials Chemistry A, 2017, 5, 554. 23 Chen S, Skordos A, Thakur VK. Materials Today Chemistry, 2020, 17, 100304. 24 Zou K L, Dan Y, Xu H J, et al. Materials Research Bulletin, 2019, 113, 190. 25 Hao X H. Journal of Advanced Dielectrics, 2013, 3(1), 1330001. 26 Palneedi H, Peddigari M, Hwang G T, et al. Advanced Functional Materials, 2018, 28(42), 1803665. 27 Hu X P, Yi K W, Liu J, et al. Energy Technology, 2018, 6(5), 849. 28 Li F. Study on electric card effect and energy storage characteristics of bismuth based perovskite lead-free relaxor ferroelectric ceramics. Ph. D. Thesis, University of the Chinese Academy of Sciences (Chinese Academy of Sciences Shanghai Institute of Silicate), China, 2019 (in Chinese). 李峰. 铋基钙钛矿无铅弛豫铁电陶瓷的电卡效应与储能特性研究. 博士学位论文, 中国科学院大学(中国科学院上海硅酸盐研究所), 2019. 29 Zhang R, Wang P B, Guo Q H, et al. Ceramics International, 2023, 49(19), 31582. 30 Wang Z X, Wang C, Jiao X F, et al. Microelectronics and Nanoelectronics Technology, 2023, 60(4), 633(in Chinese). 王朝霞, 王超, 焦晓飞, 等. 微纳电子技术, 2023, 60(4), 633. 31 Qi J L, Zhang M H, Chen Y Y, et al. Cell Reports Physical Science, 2022, 3(11), 101110. 32 Jin L, Li F, Zhang S J. Journal of the American Ceramic Society, 2014, 97(1), 1. 33 Acosta M, Novak N, Rojas V, et al. Applied Physics Reviews, 2017, 4(4), 041305. 34 Liu N T, Liang R H, Zhou Z Y, et al. Journal of Materials Chemistry C, 2018, 6, 10211. 35 Pan Z B, Wang P, Hou X, et al. Advanced Energy Materials, 2020, 10(31), 2001536. 36 Li F, Zhang S J, Damjanovic D, et al. Advanced Functional Materials, 2018, 28(37), 1801504. 37 Tian T F, Chen F L, Zhang L B, et al. Modern Technology Ceramics, 2023, 44 (3), 153 (in Chinese). 田婷芳, 陈飞龙, 张良斌等. 现代技术陶瓷, 2023, 44(3), 153. 38 Qiao Y L, Li W L, Zhao Y, et al. ACS Applied Energy Materials, 2018, 1(3), 956. 39 Jin Q, Song E P, Cai K, et al. Journal of Electronic Materials, 2022, 51(9), 51885204. 40 Su Q. Preparation and energy storage behavior of rare earth doped bismuth sodium titanate based relaxing ferroelectric ceramics. Master's Thesis, Inner Mongolia University of Science and Technology, China, 2023(in Chinese). 苏乾. 稀土掺杂钛酸铋钠基弛豫铁电陶瓷制备与储能行为. 硕士学位论文, 内蒙古科技大学, 2023. 41 Gao F, Dong X L, Mao C L, et al. Journal of the American Ceramic Society, 2011, 94, 4162. 42 Li Q, Wang C, Zhang W, et al. Journal of Materials Science, 2019, 54(6), 4523. 43 Gao F, Dong X L, Mao C L, et al. Journal of the American Ceramic Society, 2011, 94, 4382. 44 Chen L. Design and mechanism of high-performance lead-free relaxor ferroelectric energy storage ceramics. Ph. D. Thesis, Beijing University of Science and Technology, China, 2023(in Chinese). 陈良. 高性能无铅弛豫铁电储能陶瓷的设计及机理. 博士学位论文, 北京科技大学, 2023. 45 Ji H F, Wang D W, Bao W C, et al. Energy Storage Materials, 2021, 38, 113. 46 Yang H B, Tian J H, Lin Y, et al. Chemical Engineering Journal, 2021, 418, 129337. 47 Yang L, Kong X, Li F, et al. Progress in Materials Science, 2019, 102, 72. 48 Du J S, Tang B H, Liu W, et al. Journal of Advanced Ceramics, 2020, 9(2), 173. 49 Zhang C, Chen Y, Zhou M X, et al. Journal of Materials Chemistry C, 2019, 7(26), 8120. 50 Huang Y, Wu Y, Liu B, et al. Journal of Materials Chemistry A, 2018, 6(10), 4477. 51 Li D, Lin Y, Zhang M, et al. Chemical Engineering Journal, 2019, 392, 123729. 52 Lin Q Z, Li L G, Dou W S, et al. Ceramics International, 2023, 49(10), 16225. 53 Yao Z, Song Z, Hao H, et al. Advanced Materials, 2017, 29(20), 1601727. 54 Chu B K, Hao J G, Li P, et al. ACS Applied Materials & Interfaces, 2022 , 14 (17), 19683. 55 Ding J X, Liu Y F, Lu Y N, et al. Materials Letters, 2014, 114, 107. 56 Tang L M, Pan Z B, Zhao J H, et al. Journal of Alloys and Compounds, 2023, 935, 168124. 57 Wang M, Feng Q, Luo C Y, et al. ACS Applied Materials & Interfaces, 2021, 13, 51218. 58 Li A Q, Wu J G, Qiao S, et al. Physica Status Solidi A, 2012, 209, 1213. 59 Yang H, Cai Z M, Zhu C Q, et al. ACS Sustainable Chemistry & Engineering,2022, 10, 9176. 60 Zhu C Q, Cai Z M, Luo B C, et al. ACS Applied Material & Interfaces, 2021, 13, 28484. 61 Chen Y H, Wang Y S, Zhao D E, et al. Materials Chemistry and Physics, 2022, 126542. 62 Zhao H Y, Cao W J, Liang C, et al. Chemical Engineering Journal, 2023, 471, 144702. 63 AkioS and Takahiro W. Japanese Journal of Applied Physics, 2004, 43, 6793. 64 Cen Z Y. Structure and properties of potassium sodium niobate based lead-free piezoelectric ceramics sintered under different atmospheres. Ph. D. Thesis, Tsinghua University, China, 2021 (in Chinese). 岑侦勇. 不同气氛烧结铌酸钾钠基无铅压电陶瓷的结构与性能. 博士学位论文, 清华大学, 2021. 65 Duke P C S, Ainara A, Stephen J S. Improvement of ionic conductivity in A-site lithium doped sodium bismuth titanate. Ph. D. Thesis, Imperial College London, UK, 2018. 66 Kang W S, Zheng Z S, Li Y L, et al. Ceramics International, 2020, 46, 24091. 67 Cao W P, Tu J B, Lin Q R, et al. Materials in Electronics, 2023, 34, 928. 68 Bai Q Z, Ma J, Wu W J, et al. Ceramics International, 2020, 46, 17691. 69 Serralta-Macias J J, Calderón-Piñar F, García-Zaldivar O, et al. Aip Advances, 2021, 11, 065020. 70 Yang F, Li M, Li L, et al. Journal of Materials Chemistry A, 2018, 6, 5243. 71 Singh A, Chatterjee R, Gupta V. Materials Chemistry and Physics , 2021, 265, 124483. 72 Liu X, Zhao Y X, Hu H C, et al. Lonics, 2019, 25, 2729. 73 Dou R P, Lu X P, Yang L, et al. Journal of Inorganic Materials, 2018, 33, 5. 74 Xie Y J, Hao H, Huang Z T, et al. Journal of Alloys and Compounds, 2021, 884, 161031. 75 Zhao Y Y, Xu J W, Zhou C R, et al. Ceramics International, 2016, 42, 2221. 76 Jin L, Huang Y Y, Pang J, et al. Ceramics International, 2020, 46, 22889. 77 Ye W H, Yan B, Ma J X, et al. Journal of The American Ceramic Society, 2023, 106, 11, 6858. 78 Zuo R Z, Ye C, Fang X S, et al. Journal of the European Ceramic Society, 2008, 28, 871. 79 Zuo R Z, Wang H Q, Ma B, et al. Journal of Materials Science:Materials in Electronics, 2009, 20, 1140. 80 Liu Y, Li Y L, Zheng Z S, et al. Ceramics International, 2021, 47, 4933. 81 Zhang J T, Lin Y, Wang L, et al. Journal of the European Ceramic Society, 2020, 40, 5458. 82 Li X H, Yang H, Zhu C Q, et al. Ceramics International, 2024, 50, 1438. 83 Li H H, Yang F, Chen X Q, et al. Ceramics International, 2023, 49, 39559. 84 Chen L, Li F, Gao B T, et al. Chemical Engineering Journal, 2023, 452, 139222. 85 Ren P R, Zhao H, Wang X, et al. Journal of Materiomics, 2023, 9(3), 482. 86 Tang L M, Yu Z Y, Pan Z B, et al. Small, 2023, 19, 2302346. 87 Li D, Zhou D, Wang D, et al. Small, 2022, 19, 2206958. 88 Hu Y C, Dang S T, Cao J Q, et al. Solid State Communications, 2023, 362, 115100. 89 Zhao P Y, Cai Z M, Wu L W, et al. Journal of Advanced Ceramics, 2021, 10(6), 1153. 90 Laadjal K, Cardoso A J M. Electronics, 2023, 12(6), 12061297. 91 Ren P R, He J J, Yan F X, et al. Journal of Alloys and Compounds, 2019, 807, 151676. 92 Zhao P Y, Chen L L, Li L T, et al. Journal of Materials Chemistry A, 2021, 9, 25914. 93 Cai Z M, Zhu C Q, Wang H X, et al. Journal of Materials Chemistry A, 2019, 7, 14575. |
|
|
|