INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Research Progress in Thermal Energy Storage Molten Salts for Concentrated Solar Power Systems |
LI Guang, FU Yichuan, YU Haicun, YANG Penghui, WEI Ying, LA Peiqing, GU Yufen*
|
State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metal, Lanzhou University of Technology, Lanzhou 730050, China |
|
|
Abstract Concentrated solar power is a highly promising renewable energy technology that enables cascaded utilization of electricity and can complement other renewable energy sources such as wind and photovoltaic power. Based on domestic and international research on concentrated solar power technology, this review summarizes the research progress in thermal energy storage molten salts for concentrated solar power applications. Molten salt is an ideal medium for energy transfer and storage in thermal energy storage systems for concentrated solar power due to its excellent thermophysical properties including high heat capacity, high thermal conductivity, and low viscosity. Molten salt energy storage offers advantages such as large storage capacity, long storage cycles, and low costs, making it widely applicable in areas such as concentrated solar power, molten salt reactors, heating, and waste heat recovery. This paper first introduces the advantages and development of concentrated solar power technology, followed by a summary of the main characteristics and advancements in thermal energy storage molten salts. It also discusses newly developed salt compositions and the thermophysical properties of molten salt nanofluids. Finally, the paper summarizes and looks forward to the development of next-generation thermal energy storage molten salts is presented. The aim is to provide insights into the technological advancements in thermal energy storage molten salts for the design, manufacturing, and operation maintenance of next-generation energy transfer and storage systems.
|
Published: 25 February 2025
Online: 2025-02-18
|
|
|
|
1 Pitz-Paal R, Krüger J, Hinsch J, et al. Solar Compass, 2022, 3-4, 100029. 2 Song S, Lin H, Sherman P, et al. iScience, 2022, 25(6), 104399. 3 Kumar C M S, Singh S, Gupta M K, et al. Sustainable Energy Technologies and Assessments, 2023, 55, 102905. 4 Li F G, Trutnevyte E. Applied Energy, 2017, 189, 89. 5 Li M, Virguez E, Shan R, et al. Applied Energy, 2022, 306, 117996. 6 He W Y, Yan Q Y. Materials Reports, 2015, 29(S1), 128 (in Chinese). 贺万玉, 闫全英. 材料导报, 2015, 29(S1), 128. 7 Cabeza L F, Sole C, Castell A, et al. Proceedings of the IEEE, 2011, 100(2), 525. 8 Poole L. Concentrating solar power: Energy from mirrors, United States, 2001, pp. 778882. 9 Gauché P, Rudman J, Mabaso M, et al. Solar Energy, 2017, 152, 106. 10 Herrmann U, Kelly B, Price H. Energy, 2004, 29(5-6), 883. 11 Papaelias M, García Márquez F P, Ramirez I S. Concentrated solar power: Present and future, UK, 2018, pp. 51. 12 Mehos M, Turchi C, Vidal J, et al. In: U. S. Department of Energy Office of Scientific and Technical Information, United States, 2017, pp. 1338899. 13 Zhang Y W, Guo X, Wang L F, et al. Renewable Energy, 2018, 36(10), 1449 (in Chinese). 张远巍, 郭枭, 汪凌飞, 等. 可再生能源, 2018, 36(10), 1449. 14 Perez M, Perez R. Solar Energy Advances, 2022, 2, 100014. 15 Sun K, Zhao S Q, Li Z W. Journal of North China Electric Power University (Natural Science Edition), 2024, 51(2), 70 (in Chinese). 孙科, 赵书强, 李志伟. 华北电力大学学报(自然科学版), 2024, 51(2), 70. 16 Li W J. Theory, method and system of solar energy utilization with photovoltaics, solar thermal, and thermochemical complementarity. Ph. D. Thesis, University of Chinese Academy of Sciences (Institute of Engineering Thermophysics, Chinese Academy of Sciences), China, 2018 (in Chinese). 李文甲. 光伏—光热—热化学互补的太阳能利用理论、方法与系统. 博士学位论文, 中国科学院大学(中国科学院工程热物理研究所), 2018. 17 Xiong W, Ma Z C, Zhang X Y, et al. Journal of Solar Energy, 2022, 43(7), 39 (in Chinese). 熊伟, 马志程, 张晓英, 等. 太阳能学报, 2022, 43(7), 39. 18 Turchi C S, Boyd M, Kesseli D, et al. In: U. S. Department of Energy Office of Scientific and Technical Information, United States, 2019. pp. 1513197. 19 Liu M, Steven Tay N H, Bell S, et al. Renewable and Sustainable Energy Reviews, 2016, 53, 1411. 20 Aneke M, Wang M. Applied Energy, 2016, 179, 350. 21 Vignarooban K, Xu X, Arvay A, et al. Applied Energy, 2015, 146, 383. 22 Zhang J P, Zhou Qiang, Wang Dingmei, et al. Journal of Integrated Smart Energy, 2023, 45(2), 44 (in Chinese). 张金平, 周强, 王定美, 等. 综合智慧能源, 2023, 45(2), 44. 23 Pelay U, Luo L, Fan Y, et al. Renewable and Sustainable Energy Reviews, 2017, 79, 82. 24 Alva G, Lin Y, Fang G. Energy, 2018, 144, 341. 25 Baharoon D A, Rahman H A, Omar W Z W, et al. Renewable and Sustainable Energy Reviews, 2015, 41, 996. 26 Fernández A, Lasanta M, Pérez F. Oxidation of Metals, 2012, 78(5), 329. 27 Cao C Z, Zheng J T, Liu M G, et al. Renewable Energy, 2013, 31(12), 21 (in Chinese). 曹传钊, 郑建涛, 刘明义, 等. 可再生能源, 2013, 31(12), 21. 28 Burgaleta J I, Arias S, Ramirez D. SolarPACES, 2011, 20, 23. 29 Zhu H H, Wang K, He Y L. Energy, 2017, 140, 144. 30 Wang K, He Y L. Energy Conversion and Management, 2017, 135, 336. 31 Dunham M T, Iverson B D. Renewable and Sustainable Energy Reviews, 2014, 30, 758. 32 Ma Z, Turchi C S. In: the Supercritical CO2 Power Cycle Symposium Boulder, Colorado, United States, 2011, pp.1009673. 33 Desideri U, Campana P E. Applied Energy, 2014, 113, 422. 34 Carrillo A J, González-Aguilar J, Romero M, et al. Chemical Reviews, 2019, 119(7), 4777. 35 Lu Y, Peng G W, Wang Z P, et al. Materials Reports, 2011, 25(21), 38 (in Chinese). 路阳, 彭国伟, 王智平, 等. 材料导报, 2011, 25(21), 38. 36 Gil A, Medrano M, Martorell I, et al. Renewable and Sustainable Energy Reviews, 2010, 14(1), 31. 37 Medrano M, Gil A, Martorell I, et al. Renewable and Sustainable Energy Reviews, 2010, 14(1), 56. 38 Roper R, Harkema M, Sabharwall P, et al. Annals of Nuclear Energy, 2022, 169, 108924. 39 Kuravi S, Trahan J, Goswami D Y, et al. Progress in Energy and Combustion Science, 2013, 39(4), 285. 40 Kipouros G J, Sadoway D R. Journal of Light Metals, 2001, 1(2), 111. 41 Ding W, Shi H, Jianu A, et al. Solar Energy Materials and Solar Cells, 2019, 193, 298. 42 Gao Q, Lu Y, Yu Q, et al. Solar Energy Materials and Solar Cells, 2022, 245, 111851. 43 Fernández A G, Muñoz-Sánchez B, Nieto-Maestre J, et al. Renewable Energy, 2019, 130, 902. 44 Kondaiah P, Pitchumani R. Renewable Energy, 2023, 205, 956. 45 Kruizenga A M. In: U. S. Department of Energy Office of Scientific and Technical Information, United States, 2012, pp.1051732. 46 Dunn R I, Hearps P J, Wright M N. Proceedings of the IEEE, 2011, 100(2), 504. 47 Bonk A, Braun M, Sötz V A, et al. Applied Energy, 2020, 262, 114535. 48 Fernández A, Cortes M, Fuentealba E, et al. Renewable Energy, 2015, 80, 177. 49 Sun H, Zhang P, Wang J Q. Corrosion Science and Protection Technology, 2017, 29(5), 567 (in Chinese). 孙华, 张鹏, 王建强. 腐蚀科学与防护技术, 2017, 29(5), 567. 50 Fernández A, Ushak S, Galleguillos H, et al. Applied Energy, 2014, 119, 131. 51 Fernández A G, Ushak S, Galleguillos H, et al. Solar Energy Materials and Solar Cells, 2015, 132, 172. 52 Coscia K, Nelle S, Elliott T, et al. Journal of Solar Energy Engineering, 2013, 135(3), 034506. 53 Wang T, Mantha D, Reddy R G. Solar Energy Materials and Solar Cells, 2012, 100, 162. 54 Mantha D, Wang T, Reddy R. Journal of Phase Equilibria and Diffusion, 2012, 33(2), 110. 55 Du B Q. Preparation and thermal properties study of nitrate molten salt energy storage materials. Master’s Thesis, University of Chinese Academy of Sciences (Institute of Salt Lakes, Chinese Academy of Sciences), China, 2017 (in Chinese). 杜宝强. 硝酸熔盐储能材料的制备及热物性研究. 硕士学位论文, 中国科学院大学(中国科学院青海盐湖研究所), 2017. 56 Peng Q, Ding J, Wei X, et al. Applied Energy, 2010, 87(9), 2812. 57 Sheng P, Xu L, Zhao G Y, et al. Energy Storage Science and Technology, 2021, 10(1), 170 (in Chinese). 盛鹏, 徐丽, 赵广耀, 等. 储能科学与技术, 2021, 10(1), 170. 58 Zhao C Y, Wu Z G. Solar Energy Materials and Solar Cells, 2011, 95(12), 3341. 59 Wu Y T, Li Y, Ren N, et al. Solar Energy Materials and Solar Cells, 2018, 176, 181. 60 Zou L L, Chen X, Wu Y T, et al. Solar Energy Materials and Solar Cells, 2019, 190, 12. 61 Li J, Zhang Y, Zhao Y, et al. Solar Energy Materials and Solar Cells, 2021, 227, 111075. 62 Kwasi-Effah C C, Ighodaro O, Egware H O, et al. Results in Engineering, 2022, 16, 100721. 63 Bradshaw R W, Goods S H. In: U. S. Department of Energy Office of Scientific and Technical Information, United States, 2001, pp.1545803. 64 Chen H, Wu Y T, Lu Y W, et al. Energy Storage Science and Technology, 2018, 7(1), 48 (in Chinese). 陈虎, 吴玉庭, 鹿院卫, 等. 储能科学与技术, 2018, 7(1), 48. 65 Masuda H, Ebata A, Teramae K. Netsu Bussei, 1993, 7(4), 227. 66 Wu Y Z, Wang M, Li J L, et al. Materials Engineering, 2020, 48(1), 10 (in Chinese). 武延泽, 王敏, 李锦丽, 等. 材料工程, 2020, 48(1), 10. 67 Glatzmaier G C, Pradhan S, Kang J, et al. In: U. S. Department of Energy Office of Scientific and Technical Information, United States, 2010, pp. 991561. 68 Choi S U, Eastman J A. Enhancing thermal conductivity of fluids with nanoparticles, United States, 1995, pp. 196525. 69 Jo B, Banerjee D. Acta Materialia, 2014, 75, 80. 70 Li Z. Research on thermal property enhancement of molten salt-based nanofluids. Ph. D. Thesis, North China Electric Power University (Beijing), China, 2021 (in Chinese). 李昭. 熔盐基纳米流体热物性强化研究. 博士学位论文, 华北电力大学(北京), 2021. 71 Zhang Y. Preparation and thermal storage mechanism study of nitrate-based nanocomposite materials. Ph. D. Thesis, University of Chinese Academy of Sciences, China, 2021 (in Chinese). 张月. 硝酸盐基纳米复合材料的制备及储热机理研究. 博士学位论文, 中国科学院大学, 2021. 72 Shin D, Banerjee D. International Journal of Heat and Mass Transfer, 2011, 54(5-6), 1064. 73 Hamdy E, Olovsjö J N, Geers C. Solar Energy, 2021, 224, 1210. 74 Meng F X. Simulation study on the thermal properties of carbonate molten salt thermal storage materials. Master’s Thesis, North China Electric Power University, China, 2021 (in Chinese). 孟凡星. 碳酸盐熔盐储热材料热物性模拟研究. 硕士学位论文, 华北电力大学, 2021. 75 He W Y. Experimental study on the thermal properties and corrosiveness of mixed chloride molten salt. Master’s Thesis, Beijing University of Civil Engineering and Architecture, China, 2016 (in Chinese). 贺万玉. 混合氯化熔盐的热物性及腐蚀性实验研究. 硕士学位论文, 北京建筑大学, 2016. 76 Holcomb D, Flanagan G, Patton B, et al. In: U. S. Department of Energy Office of Scientific and Technical Information, United States, 2011, pp. 1018987. 77 Maksoud L, Bauer T. In: 10th International Conference on Molten Salt Chemistry and Technology. Shenyang, China, 2015, pp. 96675. 78 Murphy C, Sun Y, Cole W J, et al. In: U. S. Department of Energy Office of Scientific and Technical Information, United States, 2019, pp.1491726. 79 Ding W, Bonk A, Bauer T. AIP Publishing LLC, 2019, 2126(1), 200014. 80 Ding W, Bonk A, Bauer T. Frontiers of Chemical Science and Engineering, 2018, 12(3), 564. 81 Patel N S, Pavlík V, Boa M. Critical Reviews in Solid State and Materials Sciences, 2017, 42(1), 83. 82 Ding W, Shi H, Xiu Y, et al. Solar Energy Materials and Solar Cells, 2018, 184, 22. 83 Ding W, Bauer T. Engineering, 2021, 7(3), 334. 84 Vidal J C, Klammer N. AIP Publishing LLC, 2019, 2126(1), 080006. 85 Villada C, Ding W, Bonk A, et al. Solar Energy Materials and Solar Cells, 2021, 232, 111344. 86 Villada Vargas C, Ding W, Bonk A, et al. Frontiers in Energy Research, 2022, 10, 809663. 87 Li P, Molina E, Wang K, et al. Journal of Solar Energy Engineering, 2016, 138(5), 054501. 88 Xu X, Dehghani G, Ning J, et al. Solar Energy, 2018, 162, 431. 89 Mohan G, Venkataraman M, Gomez-Vidal J, et al. Energy Conversion and Management, 2018, 167, 156. 90 Mayes R T, Kurley Iii J M, Halstenberg P W, et al. In: U. S. Department of Energy Office of Scientific and Technical Information, United States, 2018, pp. 1506795. 91 Prieto C, Fereres S, Ruiz-Cabañas F J, et al. Renewable Energy, 2020, 151, 528. 92 Ming S B D. Preparation and physical property analysis of high-temperature mixed molten salts with application temperature above 600 ℃. Master’s Thesis, Beijing University of Technology, China, 2021 (in Chinese). 明苏布道. 应用温度600 ℃以上高温混合熔盐的配制与物性分析. 硕士学位论文, 北京工业大学, 2021. 93 Gomez-Vidal J C, Noel J, Weber J. Solar Energy Materials and Solar Cells, 2016, 157, 517. 94 Mohan G, Venkataraman M B, Coventry J. Renewable and Sustainable Energy Reviews, 2019, 107, 319. 95 Volkova L. Izvest Sibirsk Oldel Akad Nauk SSSR, 1958, 7, 33. 96 Wu Y T, Ren N, Wang T, et al. Solar Energy, 2011, 85(9), 1957. 97 Ren N, Wu Y T, Wang T, et al. Journal of Thermal Analysis and Calorimetry, 2011, 104(3), 1201. 98 Chen C, Tran T, Olivares R, et al. Journal of Solar Energy Engineering, 2014, 136(3), 031017. 99 Sang L, Cai M, Ren N, et al. Solar Energy Materials and Solar Cells, 2014, 124, 61. 100 Sang L, Cai M, Zhao Y, et al. Solar Energy Materials and Solar Cells, 2015, 140, 167. 101 Olivares R I, Chen C, Wright S. Journal of Solar Energy Engineering, 2012, 134(4), 041002. 102 Liu T, Dong J S, Xie G, et al. Acta Metallurgica Sinica, 2015, 51(9), 1059 (in Chinese). 刘涛, 董加胜, 谢光, 等. 金属学报, 2015, 51(9), 1059. 103 Sona C, Gajbhiye B, Hule P, et al. Corrosion Engineering, Science and Technology, 2014, 49(4), 287. 104 Wang Y, Zhang S, Ji X, et al. International Journal of Electrochemical Science, 2018, 13(5), 4891. 105 Forsberg C W, Peterson P F, Zhao H. Journal of Solar Energy Engineering, 2007, 129(2), 141. 106 Lantelme F, Groult H. In: Molten Salts Chemistry: from Lab to Applications, Elsevier, UK, 2013, pp. 187. 107 Li Y, Xu X, Wang X, et al. Solar Energy, 2017, 152, 57. 108 Tian Y, Zhao C Y. Applied Energy, 2013, 104, 538. 109 Skrbek K, Bartněk V, Sedmidubský D. Renewable and Sustainable Energy Reviews, 2022, 164, 112548. 110 Ibrahim A, Peng H, Riaz A, et al. Solar Energy Materials and Solar Cells, 2021, 219, 110768. 111 Ding W, Bonk A, Gussone J, et al. Journal of Energy Storage, 2018, 15, 408. 112 Lambrecht M, De Miguel M T, Lasanta M I, et al. Solar Energy Materials and Solar Cells, 2022, 237, 111557. |
|
|
|