INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Research Progress of Metal-Organic Framework and Carbon-based Materials for Indoor Organic Pollutants Control |
YANG Ming1,2, SUN Jie1,2,3, WANG Jinze4, CUI Zhanpeng1,2, WU Min1,2, DU Wei1,2,*
|
1 Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650504, China 2 Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Kunming 650500, China 3 Southwest United Graduate School, Kunming 650092, China 4 Laboratory for Earth Surface Processes Ministry of Education , College of Urban and Environmental Sciences, Peking University, Beijing 100871, China |
|
|
Abstract Indoor air pollutants have been recognized as important factors affecting human health, making the control of indoor air pollution of great significance for human health protection. Metal-organic frameworks and carbon-based materials are widely used materials in a variety of fields, which show promising potential in the control of indoor air pollution. In this paper, systematic review was conducted to reveal the research progress and current state of using metal-organic frameworks and carbon-based materials as adsorbents and photocatalysts in the control of indoor air pollution. Commonly used metal-organic frameworks and carbon-based materials in indoor air pollution control included activated carbon, biochar, activated carbon fiber, metal-organic framework, graphene and graphene derivatives, as well as graphite phase carbon nitride. The removal efficiency of these materials for indoor volatile organic compounds and particles was clarified, and the influencing factors and main existing problems were further discussed. The future development of metal-organic frameworks and carbon-based materials was proposed, which will help to develop cheap and efficient adsorption materials and photocatalytic materials and provide technical support for indoor air pollution control.
|
Published: 25 February 2025
Online: 2025-02-18
|
|
|
|
1 Shimada Y, Matsuoka Y. Science of the Total Environment, 2011, 409(24), 5243. 2 Marc M, Smielowska M, Namiesnik J, et al. Environmental Science and Pollution Research, 2018, 25(3), 2065. 3 Peng Z, Deng W, Tenorio R. Sustainability, 2017, 9(7), 1180. 4 Sheehan P, Singhal A, Bogen K T, et al. Risk Analysis, 2018, 38(6), 1128. 5 Grigoryan H, Edmands W M B, Lan Q, et al. Carcinogenesis, 2018, 39(5), 661. 6 Wang F, Chen D, Wu P, et al. Chemical Research in Toxicology, 2019, 32(5), 820. 7 World Health Organization. Household air pollution. https://www.who.int/zh/news-room/fact-sheets/detail/household-air-pollution-and-health. 8 Zou W X, Gao B, Ok Y S, et al. Chemosphere, 2019, 218, 845. 9 Wang J, Kong H, Zhang J, et al. Progress in Materials Science, 2021, 116, 100717. 10 Liu B, Xu W, Tao J, et al. Advanced Energy Materials, 2018, 8(11), 1702340. 11 Gopinath K P, Vo D V N, Gnana Prakash D, et al. Environmental Chemistry Letters, 2021, 19(1), 557. 12 Mahmoodi N M, Oveisi M, Taghizadeh A, et al. Journal of Hazardous Materials, 2019, 368, 746. 13 Shi G, Ruan C, He S, et al. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2021, 163, 126053. 14 Chen B, Cao Y, Zhao H, et al. Journal of Hazardous Materials, 2020, 392, 122263. 15 Liu P, Yu Q, Xue Y, et al. Journal of Radioanalytical and Nuclear Chemistry, 2020, 324(2), 813. 16 Zhang C F. Surface functional modification of carbon-based materials and mechanism for removing VOCs. Master’s Thesis, University of Chinese Academy of Sciences, China, 2022 (in Chinese). 张超锋. 碳基材料表面功能化改性及去除VOCs机制. 硕士学位论文, 中国科学院大学, 2022. 17 Gholami P, Khataee A, Soltani R D C, et al. Journal of Hazardous Materials, 2020, 382, 121070. 18 Khataee A, Rad T S, Nikzat S, et al. Chemical Engineering Journal, 2019, 375, 122102. 19 Rad T S, Ansarian Z, Soltani R D C, et al. Journal of Hazardous Materials, 2020, 399, 123062. 20 Nguyen Thi Thanh T, Thanh-Dong P, Doan Van T, et al. Journal of Alloys and Compounds, 2019, 798, 12. 21 Hou B, Chen S M, Jiang B, et al. Safety and Environmental Engineering, 2021, 28(1), 197 (in Chinese). 侯博, 陈思铭, 江波, 等. 安全与环境工程, 2021, 28(1), 197. 22 Zhu L L, Shen K D, Luo K H. Journal of Hazardous Materials, 2020, 389, 122102. 23 Manap N R A, Shamsudin R, Maghpor M N, et al. Journal of Environmental Chemical Engineering, 2018, 6(1), 970. 24 Shen Y, Zhang N. Bioresource Technology, 2019, 282, 294. 25 Shen Y, Zhang N, Fu Y. Journal of Environmental Management, 2019, 241, 53. 26 Jafari S, Ghorbani-Shahna F, Bahrami A, et al. Microporous and Mesoporous Materials, 2018, 268, 58. 27 Yang X N, Ren X L, Yan X Q, et al. Materials Reports, 2021, 35(17), 17111 (in Chinese). 杨晓娜, 任晓玲, 严孝清, 等. 材料导报, 2021, 35(17), 17111. 28 Isinkaralar K, Turkyilmaz A, Lakestani S. Environmental Technology and Innovation, 2023, 31, 103209. 29 Hu S, Chen Y, Lin X, et al. Environmental Science and Pollution Research, 2018, 25(28), 28525. 30 Stefanowski B K, Curling S F, Ormondroyd G A. Industrial Crops and Products, 2017, 98, 25. 31 Lin L L. Activated carbon for removing formaldehyde from air. Master’s Thesis, East China University of Science and Technology, China, 2014 (in Chinese). 林莉莉. 活性炭吸附气相甲醛的研究. 硕士学位论文, 华东理工大学, 2014. 32 Isinkaralar K, Gullu G, Turkyilmaz A. Biomass Conversion and Biorefinery, 2022, 13(5), 4279. 33 Hu L, Cheng W, Zhang W, et al. Journal of Porous Materials, 2017, 24(2), 541. 34 Shi G, He S, Chen G, et al. Chemical Engineering Journal, 2022, 428, 131148. 35 Boonamnuayvitaya V, Sae-Ung S, Tanthapanichakoon W. Separation and Purification Technology, 2005, 42(2), 159. 36 Wen Q B, Li C T, Cai Z H, et al. China Environmental Science, 2010, 30(06), 727 (in Chinese). 文青波, 李彩亭, 蔡志红, 等. 中国环境科学, 2010, 30(6), 727. 37 Hu L, Peng Y, Wu F, et al. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80, 399. 38 Kumagai S, Sasaki K, Shimizu Y, et al. Separation and Purification Technology, 2008, 61(3), 398. 39 Chen Y, Huang Y, Wang C, et al. Journal of the Air and Waste Management Association, 2020, 70(6), 616. 40 Duan C, Meng M, Huang H, et al. Materials Chemistry and Physics, 2023, 295, 127130. 41 Li S J, Huang H J, Shang L L, et al. Materials Reports, 2021, 35(S2), 75 (in Chinese). 李世杰, 黄慧娟, 尚莉莉, 等. 材料导报, 2021, 35(S2), 75. 42 Wang S S, Zhang L, Long C, et al. Journal of Colloid and Interface Science, 2014, 428, 185. 43 Suzuki R M, Andrade A D, Sousa J C, et al. Bioresource Technology, 2007, 98(10), 1985. 44 Zhang Y X, Gao B, Creamer A E, et al. Journal of Hazardous Materials, 2017, 338, 102. 45 Tong Y, Mcnamara P J, Mayer B K. Environmental Science-Water Research and Technology, 2019, 5(5), 821. 46 Yue X, Ma N L, Sonne C, et al. Journal of Hazardous Materials, 2021, 405, 124138. 47 Rajabi H, Mosleh M H, Prakoso T, et al. Chemosphere, 2021, 283, 131288. 48 Ahn Y, Cho D W, Ahmad W, et al. Journal of Environmental Management, 2021, 298, 113468. 49 Zhang X, Gao B, Zheng Y, et al. Bioresource Technology, 2017, 245, 606. 50 Vikrant K, Kim K H, Peng W, et al. Chemical Engineering Journal, 2020, 387, 123943. 51 Zhuang Z, Wang L, Tang J. Journal of Hazardous Materials, 2021, 406, 124676. 52 Shen Y, Zhang N. Bioresource Technology, 2019, 282, 294. 53 Xiang W, Zhang X, Chen K, et al. Chemical Engineering Journal, 2020, 385, 123842. 54 Ji Y M, Wu Y L, Ma W T, et al. New Chemical Materials, 2020, 48(S1), 32 (in Chinese). 纪咏梅, 吴亚玲, 马文涛, 等. 化工新型材料, 2020, 48(S1), 32. 55 Son H K, Sivakumar S, Rood M J, et al. Journal of Hazardous Materials, 2016, 301, 27. 56 Baur G B, Yuranov I, Kiwi-Minsker L. Catalysis Today, 2015, 249, 252. 57 Xie Z Z, Wang L, Cheng G, et al. Journal of the Air and Waste Management Association, 2016, 66(12), 1224. 58 Machowski K, Natkanski P, Bialas A, et al. Journal of Thermal Analysis and Calorimetry, 2016, 126(3), 1313. 59 Yang S, Zhu Z, Wei F, et al. Building and Environment, 2017, 125, 60. 60 Huang Y C, Luo C H, Yang S, et al. Clean-Soil Air Water, 2010, 38(11), 993. 61 Wee J H, Bae Y, Ahn H, et al. Carbon Letters, 2022, 32(4), 1111. 62 Yang S, Zhu Z, Wei F, et al. Building and Environment, 2017, 126, 27. 63 Sidheswaran M A, Destaillats H, Sullivan D P, et al. Building and Environment, 2012, 47, 357. 64 Wang H, Zu D, Jiang X, et al. Advanced Fiber Materials, 2023, 5(6), 1934. 65 Ryu D Y, Shimohara T, Nakabayashi K, et al. Journal of Industrial and Engineering Chemistry, 2019, 80, 98. 66 Dan D, Mao X J, Wu Q C, et al. Shanghai Dyestuffs, 2023, 51(5), 28 (in Chinese). 单栋, 毛新军, 吴齐超, 等. 上海染料, 2023, 51(5), 28. 67 He Y, Dong W, Li X, et al. Journal of Colloid and Interface Science, 2020, 574, 364. 68 Dong W, Wang D, Wang H, et al. Journal of Colloid and Interface Science, 2019, 535, 444. 69 Dai X J, Feng S, Wu W, et al. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32(7), 2371. 70 Entezami N, Farhadian M, Nazar A R S, et al. Process Safety and Environmental Protection, 2022, 164, 747. 71 Xiao X, Zou L, Pang H, et al. Chemical Society Reviews, 2020, 49(1), 301. 72 Dang S, Zhu Q L, Xu Q. Nature Reviews Materials, 2018, 3(1), 17075. 73 Xu Y, Li Q, Xue H, et al. Coordination Chemistry Reviews, 2018, 376, 292. 74 Zhan W, Sun L, Han X. Nano-micro Letters, 2019, 11(1), 1. 75 Li R, Zhang W, Zhou K. Advanced Materials, 2018, 30(35), 1705512. 76 Ahmad A, Ali M, Al-Sehemi A G, et al. Chemical Engineering Journal, 2023, 452, 139436. 77 Qian Y, Ma D, Zhong J. Frontiers in Chemistry, 2021, 9, 749839. 78 Tu S H, Zhong R F, Zhang C, et al. Materials Reports, 2024, 38(16), 23030150 (in Chinese). 涂盛辉, 钟荣福, 张超, 等. 材料导报, 2024, 38(16), 23030150. 79 Duan J, He X, Ma Z, et al. Microporous and Mesoporous Materials, 2022, 336, 111892. 80 Huang Q, Hu Y, Pei Y, et al. Applied Catalysis B-Environmental, 2019, 259, 118106. 81 Wang T, Wang Y, Sun M, et al. Chemical Science, 2020, 11(26), 6670. 82 Yang Z, Zhang J, Wang J, et al. Chemosphere, 2022, 296, 133291. 83 Zhou Y, Ouyang W L, Wang Y J, et al. Journal of Physical Chemistry, 2021, 37(8), 107 (in Chinese). 周易, 欧阳威龙, 王岳军, 等. 物理化学学报, 2021, 37(8), 107. 84 Li P, Kim S, Jin J, et al. Applied Catalysis B-Environmental, 2020, 263, 118284. 85 Zhang J, Hu Y, Qin J, et al. Chemical Engineering Journal, 2020, 385, 123814. 86 Shah S J, Wang R, Gao Z, et al. Chemical Engineering Journal, 2021, 411, 128590. 87 Gao Z, Wang J, Muhammad Y, et al. Chemical Engineering Journal, 2020, 388, 124389. 88 Park H, Park Y, Kim W, et al. Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 2013, 15, 1. 89 Zhang H Q, Guo Y B, Chen Y M, et al. Chinese Chemical Bulletin, 2023, 86(11), 1313 (in Chinese). 张慧琴, 郭月滨, 陈艳梅, 等. 化学通报, 2023, 86(11), 1313. 90 Wang X, Yin L, Liu G. Chemical Communications, 2014, 50(26), 3460. 91 Adamu H, Dubey P, Anderson J A. Chemical Engineering Journal, 2016, 284, 380. 92 Zhang H, Lv X, Li Y, et al. Acs Nano, 2010, 4(1), 380. 93 Ali M, Anjum A S, Bibi A, et al. Carbon, 2022, 196, 649. 94 Ali M, Riaz R, Anjum A S, et al. Carbon, 2021, 171, 493. 95 Chen J. Synthesis and structural control of graphene oxide. Ph. D. Thesis, Tsinghua University, China, 2016 (in Chinese). 陈骥. 氧化石墨烯的制备及结构控制. 博士学位论文, 清华大学, 2016. 96 Yu L, Wang L, Sun X, et al. Journal of Environmental Sciences, 2018, 73, 138. 97 Liu F, Gao X, Peng M. Separations, 2022, 9(2), 31. 98 Chen W, Chen J, Zhang J, et al. Materials Research Express, 2019, 6(10), 105503. 99 Tai X H, Lai C W, Yang T C K, et al. Journal of Environmental Chemical Engineering, 2022, 10(4), 108047. 100 Tai X H, Chook S W, Lai C W, et al. RSC Advances, 2019, 9(31), 18076. 101 Shi Q, Zhao W, Xie L, et al. Journal of Alloys and Compounds, 2016, 662, 108. 102 Winayu B N R, Chou C C, Chu H. Journal of the Taiwan Institute of Chemical Engineers, 2022, 139, 104529. 103 Lu C, Gou Z, Li S, et al. Green Processing and Synthesis, 2022, 11(1), 195. 104 Xu Y, Liu C B, Zheng L Z, et al. Materials Reports, 2024, 38(21), 23060180 (in Chinese). 徐杨, 刘成宝, 郑磊之, 等. 材料导报, 2024, 38(21), 23060180. 105 Xu L, Qi L, Han Y, et al. Chemical Engineering Journal, 2022, 430, 132828. 106 Li Y, Zhou M, Cheng B, et al. Journal of Materials Science and Technology, 2020, 56, 1. 107 Yu Q L, Liu C B, Jin T, et al. Materials Reports, 2024, 38(11), 22090279 (in Chinese). 于巧玲, 刘成宝, 金涛, 等. 材料导报, 2024, 38(11), 22090279. 108 Ong W J, Tan L L, Ng Y H, et al. Chemical Reviews, 2016, 116(12), 7159. 109 He L, Fei M, Chen J, et al. Materials Today, 2019, 22, 76. 110 Dong G, Zhang Y, Pan Q, et al. Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 2014, 20, 33. 111 Wang A, Wang C, Fu L, et al. Nano-Micro Letters, 2017, 9(4), 47. 112 Lu C, Chen R, Wu X, et al. Applied Surface Science, 2016, 360, 1016. 113 Fu J, Zhu B, Jiang C, et al. Small, 2017, 13(15), 1603938. 114 Zhu Y P, Ren T Z, Yuan Z Y. ACS Applied Materials and Interfaces, 2015, 7(30), 16850. 115 Wang K, Li Q, Liu B, et al. Applied Catalysis B-Environmental, 2015, 176, 44. 116 Jin Q, Xiang Y, Gan L. Catalysts, 2023, 13(2), 238. 117 Rao X, Dou H, Long D, et al. Chemosphere, 2020, 244, 125462. 118 Kong L, Li X, Song P, et al. Chemical Physics Letters, 2021, 762, 138132. 119 Wang W, Zhang D, Ji Z, et al. Optical Materials, 2021, 111, 110721. 120 Li X, Qian X, An X, et al. Applied Surface Science, 2019, 487, 1262. 121 Liu S H, Lin W X. Journal of Hazardous Materials, 2019, 368, 468. 122 Li Y W, Li S Z, Zhao M B, et al. Separation and Purification Technology, 2023, 327, 124966. 123 Qiu P, Chen H, Xu C, et al. Journal of Materials Chemistry A, 2015, 3(48), 24237. 124 Hao R, Wang G, Jiang C, et al. Applied Surface Science, 2017, 411, 400. 125 Mamaghani A H, Haghighat F, Lee C S. Applied Catalysis B-Environmental, 2017, 203, 247. 126 Wu C. Applied Surface Science, 2014, 319, 237. 127 He Z, Xiong J, Kumagai K, et al. Environment International, 2019, 132, 105086. |
|
|
|