| POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
| Research Progress in Transparent Anti-Fouling Coating Technology and Its Applications in Photovoltaics |
| YANG Dicong1,3,4, MO Xiaoliang1,2,3,4,*, CHU Junhao1,2,3,4
|
1 Institute of Optoelectronics, Fudan University, Shanghai 200438, China 2 College of Future Information Technology, Fudan University, Shanghai 200438, China 3 State Key Laboratory of Photovoltaic Science and Technology, Shanghai 200438, China 4 Shanghai Intelligent Optoelectronics and Sensing Advanced Scientific Research Base, Shanghai 200438, China |
|
|
|
|
Abstract Solar cells technologies, widely utilized as renewable energy sources in diverse environments such as terrestrial, desert, and marine settings, often suffer from reduced photoelectric conversion efficiency due to surface contamination such as dust, oil, and microorganisms. Benefiting from the integrated transparency and antifouling properties, transparent antifouling coatings can be applied to the surface of photovoltaic devices and equipment for antifouling purposes, thereby improving the photoelectric conversion efficiency of the devices and extending their service life. Relevant research can address the problems existing in current antifouling technologies such as manual cleaning and mechanical sweeping, including high maintenance costs and the risk of damaging batteries. However, achieving high transparency, multifunctionality, durability, and stability in these coatings remains a significant challenge. This paper reviews various strategies for constructing transparent anti-fouling coatings, including hydrophilic and wetting surfaces, hydrophobic and oleophobic surfaces, slippery surfaces, and anti-fouling agent release mechanisms. Additionally, it explores the development of multifunctional transparent coatings with features such as radiative cooling, anti-reflection, and flexible bending resistance, and in the end discusses their applications and challenges in solar cells and optical fields.
|
|
Published: 25 December 2025
Online: 2025-12-17
|
|
|
|
|
1 Hosenuzzaman M, Rahim N A, Selvaraj J, et al. Renewable and Sustai-nable Energy Reviews, 2015, 41, 284. 2 Herwin S S, Monica C. Energies, 2022, 15, 6098. 3 Gu S, Lin R X, Han Q L, et al. Advance Materials, 2020, 32, 1907392. 4 Kim J Y, Lee J W, Jung H S, et al. Chemical Reviews, 2020, 120(15), 7867. 5 Zhao C, Wang J, Zhao X, et al. Nanoscale, 2021, 13, 2181. 6 Zhou Z J, Sun H H, Wang Q, et al. Materials Reports, 2023, 37(18), 24(in Chinese). 周子吉, 孙慧慧, 王群, 等. 材料导报, 2023, 37(18), 24. 7 Li Z, Klein T, Kim D, et al. Nature Reviews Materials, 2018, 3, 18017. 8 Aydin E, Allen T G, Bastiani M D, et al. Science, 2024, 383, eadh3849. 9 Isaifan R J, Johnson D, Ackermann L, et al. Solar Energy Materials and Solar Cells, 2019, 191, 13. 10 Kazem H A. Environmental Science and Pollution Research, 2023, 30, 119568. 11 Zaihidee F M, Mekhilef S, Seyedmahmoudian M, et al. Renewable and Sustainable Energy Reviews, 2016, 65, 1267. 12 Salamah T, Ramahi A, Alamara K, et al. Science of The Total Environment, 2022, 827, 154050. 13 Gong F X, Liu X W, Wang L. Hydropower and New Energy, 2015(5), 71(in Chinese). 龚芳馨, 刘晓伟, 王靓. 水电与新能源, 2015(5), 71. 14 Regmi G. Current Organic Chemistry, 2023, 27(22), 1385. 15 Maurya M R, Cabibihan J J, Sadasivuni K K, et al. Frontiers in Energy, 2022, 16, 548. 16 Wang J J, Wang L, Xie Z P. Paint & Coatings Industry, 2023, 53(9), 42(in Chinese). 王晶晶, 王璐, 谢志鹏. 涂料工业, 2023, 53(9), 42. 17 Wang C J, Liu S P, Wang Z H, et al. Materials Reports, 2022, 36(23), 195(in Chinese). 王池嘉, 刘书佩, 王子华, 等. 材料导报, 2022, 36(23), 195. 18 Deng Z P, Wu H M, Jiang W Z, et al. Journal of Sichuan University (Natural Science Edition), 2024, 61(5), 172(in Chinese). 邓泽鹏, 吴华猛, 蒋卫中, 等. 四川大学学报(自然科学版), 2024, 61(5), 172. 19 Dong W R, Li B C, Wei J F, et al. New Journey of Chemistry, 2022, 46, 6646. 20 Liu X Y, Xu L L, Zhao S S, et al. RSC Advances, 2023, 13, 23409. 21 Meng F, Wang W, Yu Y, et al. Journal of Coatings Technology and Research, 2023, 20, 2091. 22 Xu Y, Wu Q Y, Yang D C, et al. Sustainable Materials and Technologies, 2025, 43, e01278. 23 Laschewsky A, Rosenhahn A. Langmuir, 2019, 35(5), 1056. 24 Zhang H, Zheng J, Lin C, Yuan S. Molecules, 2022, 27(10), 3074. 25 Yu T, Wu J J, Shen Y, et al. Chemical Engineering Journal, 2024, 498, 155144. 26 Wang D H, Xu J K, Tan J Y, et al. Chemical Engineering Journal, 2021, 422, 130115. 27 Zhang J, Bo S, Feng H, et al. Coatings, 2021, 11(10), 1164. 28 Zhang J W, Bai X F, Chen R R, et al. Applied Surface Science, 2023, 641, 158532. 29 Zhang J W, Bai X F, Chen R R, et al. ACS Applied Materials & Interfaces, 2024, 16(44), 61249. 30 Feng L, Li S H, Li Y S, et al. Advanced Materials, 2002, 14(24), 1857. 31 Xu Y Z, He J X, Zhu W B, et al. Surface Technology, 2022, 51(10), 336(in Chinese). 徐亚洲, 何瑾馨, 朱卫彪, 等. 表面技术, 2022, 51(10), 336. 32 Liu P, Liu S Q, Yu X Q, et al. Chemical Engineering Journal, 2021, 406, 127153. 33 Gao J, Liu Y M, Zhong Y, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2024, 694, 134121. 34 Zhu Q, Li B C, Li S B, et al. Journal of Colloid and Interface Science, 2020, 578, 262. 35 Tuteja A, et al. Science, 2007, 318, 1618. 36 Liu T L, Kim C J. Science, 2014, 346, 1096. 37 Rahmawan Y, Xu L B, Yang S. Journal of Materials Chemistry A, 2013, 1, 2955. 38 Chen H, Wang Z, Wang D, et al. Science China Technological Sciences, 2024, 67, 2031. 39 Li H J, Jin Q Q, Li H, et al. Advanced Functional Materials, 2024, 34, 2309684. 40 Shi T, Wang H N, Jia Q, et al. Materials Chemistry and Physics, 2023, 293, 126888. 41 AbuJarad N, Imran H, Imani S M, et al. Advanced Materials Technologies, 2022, 7, 2101702. 42 Zhu P, Zhu L J, Ge F F, et al. Surface and Coatings Technology, 2021, 426, 127793. 43 Ge D, Yang L, Zhang Y, Rahmawan Y, Yang S. Particle & Particle Systems Characterization, 2014, 31, 763. 44 European Chemicals Agency (ECHA). ECHA and five European countries issue progress update on PFAS restriction[EB/OL]. Helsinki:ECHA, Nov. 20, 2024 [2024-12-01]. https://echa.europa.eu/-/echa-and-five-european-countries-issue-progress-update-on-pfas-restriction. 45 Bers A V, Wahl M. Biofouling, 2004, 20(1), 43. 46 Liu Y B, Gu H M, Jia Y, et al. Chemical Engineering Journal, 2019, 356, 318. 47 Gangadoo S, Chandra S, Power A, et al. Journal of Materials Chemistry B, 2016, 4, 5747. 48 Liu Y H, Peng X Y, Liu X L. Chemical Journal of Chinese Universities, 2023, 44(8), 20230089. 49 Li J W, Lu B, Cheng Z B, et al. Progress in Organic Coatings, 2024, 191, 108460. 50 Tong Z, Song L, Chen S, et al. Advanced Functional Materials, 2022, 32, 2201290. 51 Wong T S, Kang S, Tang S, et al. Nature, 2011, 477, 443. 52 Tran G H, Nguyen Q B, Bui N N D, et al. Journal of Applied Polymer Science, 2024, 141(40), e56024. 53 Vogel N, Belisle R, Hatton B, et al. Nature Communications, 2013, 4, 2176. 54 Tenjimbayashi M, Park J Y, Muto J, et al. ACS Biomaterials Science & Engineering, 2018, 4(5), 1871. 55 Kasapgil E, Anac I, Erbil H Y, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 560, 223. 56 Zhang M L, Yu J, Chen R R, et al. Journal of Alloys and Compounds, 2019, 803, 51. 57 Kwon H Y, Jin J. Macromolecular Research, 2023, 31, 65. 58 Demirel G B, Caglar B N, Mutlutürk E, et al. Surface and Coatings Technology, 2024, 492, 131200. 59 Wei C Q, Zhang G F, Zhang Q H, et al. ACS Applied Materials & Interfaces, 2016, 8(50), 34810. 60 Ji J J, Liu N, Tian Y, et al. Chemical Engineering Journal, 2022, 445, 136716. 61 Lu N, Wu H M, Wang J L, et al. Journal of Sol-Gel Science and Technology, 2024, 110, 267. 62 Lin X, Li H T, Nie M X, et al. ACS Applied Materials & Interfaces, 2022, 14(34), 39432. 63 Zhang J W, Bai X F, Chen R R, et al. Progress in Organic Coatings, 2024, 196, 108679. 64 Rajagopalan N, Kiil S. Progress in Organic Coatings, 2024, 196, 108754. 65 Sun J W, Duan J Z, Liu C, et al. Chemical Engineering Journal, 2024, 490, 151567. 66 Preet S. Renewable and Sustainable Energy Reviews, 2018, 82(1), 791. 67 Sato D, Yamada N. Renewable and Sustainable Energy Reviews, 2019, 104, 151. 68 Zhang H Q, Cai Y Z, Liu L H, et al. Solar Energy Materials and Solar Cells, 2022, 245, 111859. 69 Yu S, Yu J, Chen Z, et al. ACS Photonics, 2024, 11(8), 3412. 70 Li Y, Chen X, Yu L, et al. ACS Applied Materials & Interfaces, 2023, 15(3), 4122. 71 Pour S S, Askarpour A N. Optical Materials, 2024, 147, 114751. 72 Feng K, Zhang L, Liu Y, et al. Chemical Engineering Journal, 2024, 488, 151176. 73 Liu E C, Sun M H, Wu M J, et al. Renewable Energy, 2024, 237(B), 121800. 74 Ye P, Peng J, Xu F, et al. Progress in Organic Coatings, 2023, 184, 107827. 75 Luo W, Xu J, Li G, et al. Langmuir, 2022, 38(23), 7129. 76 Lim S H, Ly N H, Lee J A, et al. Polymers, 2021, 13(19), 3333. 77 Lin E, Ye Z, Zheng L, et al. Thin Solid Films, 2024, 798, 140368. 78 Zhang J W, Bai X F, Chen R R, et al. Applied Surface Science, 2023, 641, 158532. 79 Wang X D, Zhao H Y, Su Y X, et al. ACS Applied Materials & Interfaces, 2019, 11(40), 37084. 80 Isakov K, Kauppinen C, Franssila S, et a1. ACS Applied Materials & Interfaces, 2020, 12(44), 49957. 81 Ai L, Zhang J, Li X, et al. ACS Applied Materials & Interfaces, 2018, 10(5), 4993. 82 Suzuki R. Journal of Sol-Gel Science and Technology, 2023, 106, 860. 83 Jin W J, Tan X Y, Dai Q H, et al. Materials Science in Semiconductor Processing, 2024, 184, 108847. 84 Fan C J, Zeng J Y, Yan X L, et al. Optical Materials, 2024, 157(1), 116022. 85 Choi G M, Jin J, Shin D, et al. Advanced Materials. 2017, 29, 1700205. 86 Chen R, Zhang Y, Xie Q, et al. Advanced Functional Materials, 2021, 31, 2011145. 87 Zhang Y, Chen Z, Zheng H, Chen R, Ma C, Zhang G. Advanced Science, 2022, 9, 2200268. 88 Li W, Wu G, Tan J H, et al. Macromolecular Materials and Engineering, 2019, 304(7), 1800765. 89 Huang Z H, Chen J Z, Li R, et al. Progress in Organic Coatings, 2023, 182, 107636. 90 Peng S J, Ouyang B S, Men Y Z, et al. Biomaterials, 2020, 231, 119680. 91 Dai G X, Xie Q Y, Ai X Q, et al. ACS Applied Materials & Interfaces, 2019, 11(44), 41750. 92 Guo W J, Li X, Xu F C, et al. ACS Applied Materials & Interfaces, 2018, 10(15), 13073. 93 Liang B, Zhong Z X, Jia E, et al. ACS Applied Materials & Interfaces, 2019, 11(33), 30300. 94 Yang H X, Jin K L, Wang H L, et al. Progress in Organic Coatings, 2022, 165, 106764. 95 Ha Z M, Lei L, Xia Y Z, et al. Progress in Organic Coatings, 2024, 197, 108813. 96 Sampaio P G V, González M O A. Renewable and Sustainable Energy Reviews, 2017, 74, 590. 97 Shi T, Wang H, Jia Q, et al. Materials Chemistry and Physics, 2023, 293, 126888. 98 Alamri H R, Rezk H, Abd-Elbary H, et al. Coatings, 2020, 10, 503. 99 Qin J, Lu H. Environmental Science and Pollution Research, 2023, 30, 91591. 100 Ziętkowska K, Przybyszewski B, Grzęda D, et al. Applied Sciences, 2023, 13(13), 7730. 101 Zheng W, Lin S, Ni Y, et al. Industrial & Engineering Chemistry Research, 2023, 62(43), 17701. 102 Du X, Jiang F, Liu E, et al. Journal of Aerosol Science, 2019, 130, 32. 103 Sarkın A S, Ekren N, Sağlam Ş. Solar Energy, 2020, 199, 63. 104 Wu Y, Du J, Liu G, Ma D, et al. Renewable Energy, 2022, 185, 1034. 105 Ziętkowska K, Przybyszewski B, Grzęda D, et al. Applied Sciences, 2023, 13(13), 7730. 106 Röhr J A, Lipton J, Kong J, et al. Joule, 2020, 4, 840. 107 Liu C B, Dong H, Zhang Z Y, et al. Solar Energy, 2022, 233, 489. 108 Li Q, Zheng Y, Guo X, et al. Advanced Functional Materials, 2023, 33, 2303729. 109 Vivar M, Sharon H, Fuentes M. Renewable and Sustainable Energy Reviews, 2024, 189(B), 114004. 110 Aritra G. Ocean Engineering, 2023, 281, 115044. 111 Röhr J A, Sartor B E, Lipton J, et al. Nature Photonics, 2023, 17, 747. 112 Gu Y J, Yang J H, Zhou S X. Journal of Materials Chemistry A, 2017, 5, 10866. 113 Fukuda K, Yu K, Someya T. Advanced Energy Materials, 2020, 10, 2000765. 114 Wu Z W, Li P, Zhang Y K, Zheng Z J. Small Methods, 2018, 2(1), 1800031. 115 Lin X, Li H T, Nie M X, et al. ACS Applied Materials & Interfaces, 2022, 14 (34), 39432. 116 Wang Y, Sun R, Zhao W, et al. Advanced Functional Materials, 2025, 35(15), 2418795. 117 Zhang J W, Wang W Q, Zhou S X, et al. Progress in Organic Coa-tings, 2019, 134, 312. |
|
|
|