| METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
| Review of Advances in Inverse Catalysts: Influencing Factors and Applications |
| YANG Xueying1,3, XU Zhizhi2,3, LAI Junyu1,3, LUO Yongming1,2,3, LU Jichang1,3,*
|
1 Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650000, China 2 Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650000, China 3 Yunnan Provincial Innovation Team for Volatile Organic Compounds Pollution Prevention and Resource Utilization, Kunming University of Science and Technology, Kunming 650000, China |
|
|
|
|
Abstract Inverse catalysts are solid catalysts that consist of small amounts of oxide nanoparticles uniformly dispersed on the surface of active components, such as metals or metal oxides. These catalysts enhance catalytic performance by adjusting the interface properties to increase the density of active sites at the interface, and by using surface oxide nanoparticles to physically isolate the metal active phase. This unique design has attracted significant attention from researchers. This paper provides a comprehensive overview starting from conventional supported catalysts, highlighting the advantages of inverse catalysts over conventional catalysts. It summarizes the preparation methods for inverse catalysts and delves into the critical effects of interface interactions, crystal face effects, and size effects on catalyst performance. Finally, by analyzing the applications of inverse catalysts in heterogeneous catalysis, electrocatalysis, and photocatalysis, the paper discusses future trends for the preparation and application of inverse catalysts.
|
|
Published: 10 November 2025
Online: 2025-11-10
|
|
|
|
|
1 Hao P P, Xie M J, Chen S Y, Shan Y C, et al. Science Advances, 2020, 6(20), 7031. 2 Noritaka M, Makoto M. Chemical Reviews, 1998, 98(1), 199. 3 Hu X T, Jin Y P. Environmental Protection Science, 1994, 2(4), 1004(in Chinese). 胡小吐, 金应培. 环境保护科学, 1994, 2(4), 1004. 4 Liu C A, Sun D Z, Li W. Environmental Protection Science, 2003, 5(1), 1004(in Chinese). 刘长安, 孙德智, 李伟. 环境保护科学, 2003, 5(1), 1004. 5 Cinneide A O, Clarke J K A. Chemical Review, 1972, 7(2), 213. 6 Ye R P, Ma L X, Hong X L, et al. Angewandte Chemie International Edition, 2024, 63(3), 2317669. 7 Wang H. Promotional effect of surface-interfacial active sites on the Zr-Ce oxide solid solution surrounded Cu-based catalyst with inverse structure in CO2 hydrogenation. Master’s Thesis, Beijing University of Chemical Technology, China, 2021(in Chinese). 王浩. 新型铜基催化剂构筑、表界面结构调控及催化二氧化碳加氢制甲醇性能研究. 硕士学术论文, 北京化工大学, 2021. 8 Shen J P, Song C S. Catalysis Today, 2002, 7(1), 89. 9 Hurtado-Aular O, Ferullo R M, Belelli P G. Computational Materials Science, 2024, 233, 112741. 10 Gao Q, Li, Wen H, Liu P F, et al. Applied Surface Science, 2022, 607(7), 155118. 11 Wu C Y, Lin L L, Liu J J, et al. Nature Communications, 2020, 11(1), 5767. 12 Teng Z H, Yi X K, Zhang C H, et al. Applied Catalysis B-Environmental, 2023, 339, 123119. 13 Song C X, Zhao Z Y, Li H H, et al. Royal Society of Chemistry Advances, 2016, 6(105), 102931. 14 Yan X L, Zhang A A, Gao M Y, et al. Journal of Rare Earths, 2017, 35(12), 1216. 15 Georg-Maria S. Journal of Colloid and Interface Science, 1970, 34(3), 337. 16 Parastaev A, Muravev V, Osta E H, et al. Nature Catalysis, 2022, 5(11), 1051. 17 Zhang J, Medlin J W. Surface Science Reports, 2018, 73(4), 117. 18 Shirman T, Freeman D, Posner Y D, et al. Journal of the American Chemical Society, 2008, 130(26), 8162. 19 Ismael M. Solar Energy, 2020, 211(15), 522. 20 George M S. Chemical Reviews, 2010, 110(1), 111. 21 Zeng T B, Zhang C H. Journal of Materials Science, 2020, 55, 11535. 22 Li F, Parteder G, Allegretti F, et al. Journal of Physics: Condensed Matter, 2009, 21(13), 134008. 23 Schoiswohl J, Mittendorfer F, Surnev S, et al. Physical Review Journals, 2006, 97(12), 126102. 24 Surnev S, Fortunelli A, Netze P F. Chemical Reviews, 2012, 113(6), 4314. 25 Matsumoto T, Batzill M, Hsieh S, et al. Surface Science, 2004, 572, 127. 26 Tang X, Song C Q, Li H B, et al. Nature communications, 2024, 15(1), 3115. 27 Tang C L, Lv L P, Zhang L M, et al. Kinetics and Catalysis, 2017, 58(6), 800. 28 Shih H Y, Lee W H, Kao W C, et al. Scientific Reports, 2017, 7, 39717. 29 Ritala M, Leskelae M, Haussalo P A, et al. Physical Inorganic Chemistry, 1993, 24(47), 23. 30 Seo H O, Sim J K, Kim K D, et al. Applied Catalysis A: General, 2013, 451, 43. 31 Wang C L, Wang H W, Yao Q, et al. The Journal of Physical Chemistry C, 2015, 120(1), 478. 32 Gadkari A, Shinde T, Vasambekar P. Materials Chemistry and Physics, 2009, 114(2), 505. 33 Song C Q, Liu J J, Wang R H, et al. Nature Chemical Engineering, 2024, 1, 638. 34 Liu H W, Zhang R R, Liu S B, et al. ACS Catalysis, 2024, 14(13), 9927. 35 Chen J K, Su Y T, Meng Q J, et al. Angewandte Chemie-International Edition, 2023, 62(49), 2310191. 36 Zhu Y F, Zhang X, Koh K, et al. Nature Communications, 2020, 11, 3269. 37 Leybo D, . Etim J U, Monai M, et al. Chemical Society Reviews, 2024, 21, 10373. 38 Liu W Q, Dang S S, Cheng S F, et al. ACS Catalysis, 2024, 14(9), 7097. 39 Gu Y B, Cai Q X, Chen X L, et al. Acta Physico-Chimica Sinica, 2016, 32(7), 1674. 40 Jennison D R, Dulub O, Hebenstreit W, et al. Surface Science, 2001, 492(1), 677. 41 Ren M Q, Qian K, Huang W X. Chemistry — a European Journal, 2019, 25(70), 15962. 42 Zhang Z H, Wang S S, Song R, et al. Nature Communications, 2017, 8(1), 488. 43 Fester J, Sung Z Z, Rodriguez-Fernandez J, et al. Journal of Physical Chemistry C, 2019, 123(28), 17407. 44 Zhang K, Li L F, Goniakowski J, et al. Journal of Catalysis, 2021, 393, 100. 45 Yan H, Yang C, Shao W P, et al. Nature Communications. 2019, 10, 3470. 46 Berg R V D, Prieto G, Korpershoek G, et al. Nature Communications, 2016, 7, 13057. 47 Li Y Y, Zhang Y S, Qian K, et al. ACS Catalysis, 2022, 12(2), 1268. 48 Goniakowski J, Noguera C. The Journal of Physical Chemistry C, 2019, 123(14), 9272. 49 Goniakowski J, Noguera C. The Journal of Physical Chemistry C, 2020, 124(15), 8186. 50 Huang W G, Liu Q F, Zhou Z W, et al. Nature Communications, 2020, 11(1), 2312. 51 Martynova Y, Liu B H, McBriarty M E, et al. Journal of Catalysis, 2013, 301, 227. 52 Li W, Feng X L, Zhang Z, et al. Advanced Functional Materials, 2018, 28(49), 1802559. 53 XuX Y, Lan T, Zhao G F, et al. Applied Catalysis B: Environmental, 2023, 334, 122839. 54 WuG S, Mao D S, Lu G Z, et al. Catalysis Letters, 2009, 130(1), 177. 55 Mayr L, Kloetzer B, Zemlyanov D, et al. Journal of Catalysis, 2015, 321, 123. 56 Wu C Y, Lin L L, Liu J J, et al. Nature Communications, 2020, 11(1), 5767. 57 Zou T S, Araujo T P, Krumeich F, et al. ACS Sustainable Chemistry & Engineering, 2022, 10(1), 81. 58 Moncada J, Chen X B, Deng K X, et al. ACS Catalysis, 2023, 13(23), 15248. 59 Wang Y B, Ma R P, Shi Z P, et al. Chem. 2023, 9(10), 2931. 60 Wang H, Zhai T T, Wu Y F, et al. Advanced Science, 2023, 10(22), 2301706. 61 Yeo B S, Bell A T. Journal of the American Chemical Society, 2011, 133(14), 5587. 62 Walton A S, Fester J, Bajdich M, et al. American Chemical Society Nano, 2015, 9(3), 2445. 63 Shin D, Sinthika S, Choi M, et al. American Chemical Society Catalysis, 2014, 4(11), 4074. 64 Wu J D, Fan J C, Zhao X, et al. Angewandte Chemie International Edition, 2022, 61(34), 4. 65 Peng L S, Zheng X Q, Li L, et al. Applied Catalysis B: Environmental, 2019, 245, 122. 66 Dong Z, Yang B, Chang H B, et al. Royal Society of Chemistry Advances, 2020, 10(60), 36371. 67 Ying T T, Liu W, Yang L X, et al. Separation and Purification Technology, 2024, 330, 125272. 68 Zhang L J, Wu Y L, Tsubaki N, et al. Acta Physico-Chimica Sinica, 2023, 39(12). 2302051. 69 Qin X T, Xu M, Guan J X, et al. Nature Energy, 2024, 9, 154. 70 Senanayake S D, Stacchiola D, Rodriguez J A. Accounts of Chemical Research, 2013, 46(8), 1702. 71 Jacobson M. Z, Colella W G, Golden D M. Science, 2005, 308(5730), 1901. 72 Yu K M K, Tong W Y, West A, et al. Nature Communications, 2012, 3, 1230. 73 Yang C X, Zhang Q, Xing X, et al. Journal of the Chinese Society of Rare Earths, 2016, 34(2), 151(in Chinese). 杨笑春, 张青, 邢鑫, 等. 中国稀土学报, 2016, 34(2), 151. 74 Alvarez A, Bansode A, Urakawa A, et al. Chemical Reviews, 2017, 117(14), 9804. 75 Winter M, Brodd R J. Chemical Reviews, 2004, 104(10), 4245. 76 Debe M K. Nature, 2012, 486(7401), 43. 77 Steele Brian C H, Heinzel A. Nature, 2001, 414(6861), 345. 78 Li Y Y, Yuan M W, Wang D, et al. Journal of Beijing Normal University Natural Science, 2021, 57(5), 694. 79 Khan M M, Ansari S A, Pradhan D, et al. Industrial & Engineering Chemistry Research, 2014, 53(23), 9754. 80 Xie S L, Wang Z L, Cheng F L, et al. Nano Energy, 2017, 34, 313. |
|
|
|