| METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
| Research Progress on Modification of Iridium Alloys for High Temperature Protection |
| LIU Zhongyu1,2, DING Chenxi1, FANG Zhen1, LYU Biao1,3, HU Zhenfeng1, WANG Haoxu1,*, LIU Quan2,*
|
1 Defense Innovation Institute, Academy of Military Science PLA China, Beijing 100071, China 2 School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China 3 People’s Liberation Army Unit 63723, Xinzhou 036300, Shanxi, China |
|
|
|
|
Abstract Iridium metal, with many advantages such as a high melting point, exceptionally low oxygen permeability, robust thermal shock resistance, and superior high-temperature oxidation resistance, is esteemed as one of the ideal materials for thermal protective coatings on hot end components of aerospace equipment which services in extreme high-temperature environments ranging from 1 800 to 2 200 ℃. However, due to the high catalytic activity, low emissivity, and volatility of iridium, the service life of iridium is significantly shortened, necessitating modifications such as alloying to enhance its durability and performance. To this end, this paper reviewed the recent progress of Ir-Al, Ir-Hf, Ir-Zr, Ir-Rh, Ir-Ta, Ir-Re, and Ir-Nb iridium alloys, Ir-Al-X (X=Ta, Hf, and Zr) ternary iridium-aluminum-based alloys, and Ir-Nb-Y (Y=Hf, Ta, and Ti) ternary iridium-niobium-based alloys for their high-temperature oxidation resistance. Moreover this study built the correlation between the composition and organization of the above iridium alloys and their high-temperature oxidation resistance or service life. It emphatically introduced the high temperature antioxidant effect and mechanism of iridium alloys doped with a single element or multiple elements, and discussed the high-temperature mechanical properties or interfacial bonding strength. Then the comparative analysis has clarified the potential alloying elements such as Hf, Al, Zr, and Rh, which can be used for the design and development of iridium alloys under extreme high temperature service environments. These may provide a reference and point to a direction for the design and development of iridium alloys for extreme high temperature service environments and engineering applications.
|
|
Published: 10 November 2025
Online: 2025-11-10
|
|
|
|
|
1 Zhang K, Bai S, Zhu L, et al. Surface and Coatings Technology, 2019, 358, 371. 2 Xin W, Ping Z, Hu Z, et al. Materials Protection, 2022, 55 (3), 107. 3 Weiland R, Lupton D F, Fischer B, et al. Platinum Metals Review, 2006, 50(4), 158. 4 Li F, Zhu L, Zhang K, et al. Surface and Coatings Technology. 2023, 466, 129640. 5 Kuppusami P, Murakami H, Ohmura T. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2004, 22, 1208. 6 Tuffias, Robert H. Materials and Manufacturing Processes, 1998, 13 (5), 773. 7 Bell W E, Tagami M, Inyard R E. The Journal of Physical Chemistry, 1966, 70, 2048. 8 Wang W Y, Zhang Y, Ren K, et al. Research Square-Research Square, 2023. 9 Huang Y, Bai S, Zhang H, et al. Applied Surface Science, 2015, 328, 436. 10 Zhang K L. Design and preparation of Ir-X coating and study of its thermal protection mechanism. Ph. D. Thesis, National University of Defense Technology, China, 2020(in Chinese). 张楷力. Ir-X涂层的设计、制备及其热防护机制研究. 博士学位论文, 国防科技大学, 2020 11 Yang Y, Li K, Liu G, et al. Journal of Materials Science & Technology, 2017, 33, 1195. 12 Reed, Brian D. In:1993 JANNAF Propulsion Meeting. California, 1993, pp. 269. 13 Paul A, Binner J, Vaidhyanathan B. Ultra‐High Temperature Ceramics, DOI:10.1002/9781118700853.CH7. 14 Wu W, Chen Z, Cong X, et al. Rare Metal Materials and Engineering, 2013, 42, 435. 15 Wimber R T, Hills S W, Wahl N K, et al. Metallurgical Transactions A, 1977, 8, 193. 16 Arıkan N, Charifi Z, Baaziz H, et al. Journal of Physics and Chemistry of Solids, 2015, 77, 126. 17 Bao Z, Murakami H, Yamabe-Mitarai Y. Corrosion Science, 2011, 53, 1224. 18 Mumtaz K, Echigoya J, Enoki H, et al. Journal of Materials Science, 1995, 30, 465. 19 Wang J, Zhang Z, Xu Z, et al. Corrosion Engineering, Science and Technology, 2011, 46, 732. 20 Yang W, Zhang L, Hua Y, et al. International Journal of Refractory Metals and Hard Materials. 2009, 27(1), 33. 21 Li F, Zhu L, Zhang K, et al. Surface and Coatings Technology, 2023, 466, 129640. 22 Baklanova N I, Lozanov V V, Morozova N B, et al. Thin Solid Films, 2015, 578, 148. 23 Peters A B, Zhang D, Samuel C, et al. Nature Communications, 2024, 15(1), 3328. 24 Clift W M, Mc Carty K F, Boehme D R. Surface and Coatings Technology, 1990, 42, 29. 25 Murakami H, Kamiya K, et al. Materials Science Forum, 2009, 546, 1689. 26 Etenko A, McKechnie T, Shchetkovskiy A, et al. ECS Transactions, 2007, 3, 151. 27 Fleischer R L. Journal of Materials Science, 1987, 22, 2281. 28 Glass D. In: 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Ohio, 2008, pp. 2682. 29 Cui E, Wang C, Zuo Y et al. Surface and Coatings Technology, 2021, 427, 127821. 30 Koichiro Kamiya, Hideyuki Murakami. Journal of the Japan Institute of Metals, 2005, 69(1), 73. 31 Hua Y, Zhang L, Cheng L, et al. Materials Science and Engineering, B, 2005, 121, 156. 32 Bao Z, Murakami H, Yamabe-Mitarai Y. Corrosion Science, 2014, 87, 306. 33 Zhu L, Ye Y, Bai S, et al. Oxidation of Metals, 2019, 91, 749. 34 Hosoda H. Nanomaterials:from research to applications, Elsevier Ltd, Oxford, UK, 2006, pp.419. 35 Ode M, Murakami H, Onodera H. Scripta Materialia, 2005, 52, 1057. 36 Hosoda H, Watanabe S, Hanada S. MRS Online Proceedings Library (OPL), 1998, 552, KK8. 37 Kamiya K, Murakami H. Journal of the Japan Institute of Metals, 2005, 69, 73. 38 Kriklya L, Korniyenko K, Petyukh V, et al. Journal of Phase Equilibria and Diffusion, 2023, 44, 394. 39 Lee K N, Worrell W L. Oxidation of Metals, 1989, 32, 357. 40 Bonzel H. Journal of Catalysis, 1978, 53, 96. 41 Yamabe-Mitarai Y, Murakami H. Intermetallics, 2014, 48, 86. 42 Zhang K, Zhu L, Bai S, et al. Journal of Alloys and Compounds, 2020, 818, 152829. 43 Ran H, Du Z. Journal of Alloys and Compounds, 2006, 413(1), 101. 44 Cong X, Chen Z, Wu W, et al. Acta Astronautica, 2012, 79, 88. 45 Cong X, Chen Z, Wu W, et al. Applied Surface Science, 2012, 258(12), 5135. 46 Okamoto H. Journal of Phase Equilibria, 1992, 13, 653. 47 Chen Z, Wu W, Cong X. Journal of Materials Science & Technology, 2014, 30(3), 268. 48 Yamabe-Mitarai Y, Nakazawa S, Harada H. Scripta Materialia, 2000, 43, 1059. 49 Wu J, Zhang B, Zhan Y. Computational Materials Science, 2017, 131, 146. 50 Hu C Y. Study of CVD Ir/Re composites. Ph. D. Thesis, Central South University, China, 2002 胡昌义. CVD Ir/Re复合材料研究. 博士学位论文, 中南大学, 2002. 51 Liu S, Chen Y, et al. Surface and Coatings Technology, 2013, 237, 105. 52 Li H, Chen D, et al. Aerospace Materials & Technology, 2013, 43, 64. 53 Harding J T, John M K, Marshall A A. US patent, 19880020490, 1988. 54 Yamabe-Mitarai Y, Gu Y, Huang C, et al. JOM, 2004, 56, 34. 55 Yamabe-Mitarai Y, Ro Y, Harada H, et al. Metallurgical and Materials Transactions A, 1998, 29, 537. 56 Yamabe-Mitari Y, Ro Y, Maruko T, et al. Intermetallics, 1999, 7, 49. 57 Yamabe-Mitarai Y, Nakazawa S, Harada H. JSME International Journal Series A Solid Mechanics and Material Engineering, 2002, 45(1), 2. 58 Wu W, Chen Z, Wang L. Protection of Metals and Physical Chemistry of Surfaces, 2015, 51, 607. 59 Hosoda H, Miyazaki S, Hanada S. Intermetallics, 2000, 8, 1081. 60 Anderson D R, Lampert J K, Mishra A, et al. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 1990, 8, 2251. 61 Hill P J, Cornish L A, Witcomb M J. Journal of Alloys and Compounds, 1998, 280(1), 240. 62 Gelfond N V, Morozova N B, Igumenov I K, et al. Journal of Structural Chemistry, 2009, 50, 919. 63 Gelfond N V, Morozova N B, Igumenov I K, et al. Journal of Structural Chemistry, 2010, 51, 82. 64 Zhu L, Du G, Bai S, et al. Corrosion Science, 2017, 123, 328. 65 Ode M, Abe T, Murakami H, et al. Intermetallics, 2008, 16, 1171. 66 Venkatalaxmi A, Padmavathi B S, Amaranath T. Fluid Dynamics Research, 2004, 35(3), 229. 67 Li F, Zhu L, Zhang K, et al. Materials Today Communications, 2024, 39 109288. 68 Li F, Zhang K, et al Journal of Materials Research and Technology, 2024, 28, 4428. 69 Pan X. Preparation and properties of iridium-rhodium alloy. Master’s Thesis, Kunming Institute of Precious Metals, China, 2017(in Chinese). 潘新东. 铱铑合金的制备及性能研究. 硕士学位论文, 昆明贵金属研究所, 2017. 70 Sekido N, Hoshino A, Fukuzaki M, et al. Journal of Phase Equilibria and Diffusion, 2011, 32, 219. 71 Chen J, Wang G, et al. Heat Treatment of Metals, 2022, 47, 222. 72 Cai H, Yi J, Wei Y, et al. Precious Metals, 2016, 37(S1), 28. 73 Wei Y, Chen L, Cai H, et al. Precious Metals, 2018, 39, 16. 74 Mitsutoshi Ueda, Kenta Terai, Shunsuke Yokota, et al. Journal of the Japan Institute of Metals, 2023, 87, 10279. 75 Cotell C M, Yurek G J. Oxidation of Metals, 1986, 26, 363. 76 Murakami H, Suzuki A, et al. In:Superalloys 2004 (Tenth International Symposium). Pennsylvania, 2004. 77 Kuppusami P, Murakami H, Ohmura T. Surface Engineering, 2005, 21, 53. 78 Wang L, Chen Z, Zhang Y, et al. International Journal of Refractory Metals and Hard Materials, 2009, 27, 590. 79 Yamabe-Mitarai Y, Koizumi Y, Murakami H, et al. MRS Proceedings, 1996, 460, 701. 80 Zhuang Y, Chen J, Lv L. Materials Reports, 2014, 28, 138. 81 Wu F, Murakami H, Suzuki A. Surface and Coatings Technology, 2003, 168, 62. 82 Suzuki A, Wu F, Murakami H, et al. Science and Technology of Advanced Materials, 2004, 5, 555. 83 Ai Y. Preparation process and oxidation and ablation resistance of Ir-Al-X coatings. Ph. D. Thesis, National University of Defense Technology, China, 2018 (in Chinese). 艾园林. Ir-Al-X涂层的制备工艺及抗氧化烧蚀性能研究. 博士学位论文, 国防科技大学, 2018. 84 Go Fujii, Hideyuki Kobayashi, Hirohide Ikeda, et al. In: AIAA Propulsion and Energy Forum, Atlanta, 2017. 85 Fang Z, Hu Z, Lv B, et al. Applied Surface Science, 2024, 657 159802. 86 Zhou J, Wang Q, Hui X, et al Materials & Design, 2020, 191, 108597. 87 Wu F, Murakami H, Harada H. Materials Transactions, 2003, 44, 1675. 88 Lee K N, Worrell W L. Oxidation of Metals, 1994, 41, 37. 89 Huang M, Li K, Li H, et al. Materials Science and Technology, 2009, 25(3), 344. 90 Yamabe-Mitarai Y, Gu Y, Harada H. Physics Letters A, 2021, 127424, 405. 91 Omori T, Makino K, Shinagawa K, et al. Intermetallics, 2014, 55, 154. 92 Huang C, Yamabe-Mitarai Y, Harada H. Journal of Alloys and Compounds, 2007, 428, 220. 93 Miura S, Ohkubo K, et al. Journal of Alloys and Compounds, 2005, 395, 263. 94 Yu X, Yamabe-Mitarai Y, Ro Y, et al. Metallurgical and Materials Transactions A, 2000, 31, 173. 95 Yamabe-Mitarai Y, Murakami D H. Intermetallics, 2014, 48, 86. 96 Huang C, Yamabe-Mitarai Y. Metallurgical and Materials Transactions A, 2005, 36, 539. 97 Gu Y, Yamabe-Mitarai Y, Yokokawa T, et al. Materials Letters, 2003, 57, 1171. 98 Sha J B, Yamabe-Mitarai Y. Intermetallics, 2013, 41, 1. 99 Huang C, Yamabe-Mitarai Y, et al. Materials Science and Engineering: A, 2005, 412, 191. 100 Sha J B, Yamabe-Mitarai Y. Intermetallics, 2013, 32, 145. 101 Huang C, Yamabe-Mitarai Y, Harada H. Materials Letters, 2008, 62, 1287. 102 Gyurko A M, Sanchez J M. Materials Science and Engineering: A, 1993, 170, 169. 103 Yamabe-Mitarai Y, Aoki H. Journal of Alloys and Compounds, 2003, 359, 1143. |
|
|
|