METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Effect of V Content on High-temperature Oxidation Resistance of S30403 Austenitic Stainless Steel |
SHEN Bin1,2, GU Shangjun3, WANG Jie3, WEI Fulong3, XIE Xiang3, LI Zhiying1,2, ZHANG Junxiang1,2, LI Changrong1,2,*
|
1 College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China 2 Guizhou Province Key Laboratory of Metallurgical and Process Energy Saving, Guiyang 550025, China 3 Shougang Shuicheng Iron and Steel (Group)Co., Ltd., Liupanshui 553000, Guizhou, China |
|
|
Abstract Austenitic stainless steel, commonly used as a structural material in nuclear power plants, may experience overheating and failures due to the thickening of surface oxides at high temperatures, leading to significant safety accidents. This study utilized the static discontinuous oxidation weight gain method to investigate the high-temperature oxidation resistance of six different V-content S30403 austenitic stainless steels in a 900 ℃ air environment. The results show that Steel 1# exhibited an average oxidation rate of 0.056 9 g·m-2·h-1 after 100 hours of oxidation, meeting the complete oxidation resistance level. As the V content in the steel increased to 0.49%, Steel 6# demonstrated the highest average oxidation rate of 0.693 1 g·m-2·h-1, corresponding to the oxidation resistance level. The V element in the experimental steels facilitated the internal oxidation of Cr and Si elements, leading to a reduction in the surface oxide content of Cr2O3 and SiO2 in V-containing steels. Mn and Fe elements diffused outward through the oxide film to form a spinel structure of MnCr2O4. With the increase of V content in the steels, the continuity and density of the surface oxide film on Steels 2# to 6# gradually decrease, resulting in a decline in high-temperature oxidation resistance performance.
|
Published:
Online: 2025-08-28
|
|
|
|
1 Chen L, Ma X, Wang L, et al. Materials & Design, 2011, 32(4), 2206. 2 Rozmus-Górnikowska M, Kusiński J, Cempura G, et al. International Journal of Pressure Vessels and Piping, 2023, 203, 104951. 3 Jung S, Jeon C, Jo Y H, et al. Materials Science and Engineering A, 2016, 656, 190. 4 Liang X, Zhang Y, Zhang Q, et al. Materials Today Communications, 2023, 35, 105799. 5 Lee K, Suh J, Huh J, et al. Materials Characterization, 2013, 83, 49. 6 Chandra K, Kain V, Tewari R. Corrosion Science, 2013, 67, 118. 7 Wang M, Zhou Z, Sun H, et al. Journal of Nuclear Materials, 2012, 430(1-3), 259. 8 Moteshakker A, Danaee I. Journal of Materials Science & Technology, 2016, 32(3), 282. 9 Moura V, Kina A Y, Tavares S S M, et al. Journal of Materials Science, 2008, 43(2), 536. 10 Zinkle S J, Was G S. Acta Materialia, 2013, 61, 735. 11 Shen Z, Tweddle D, Yu H, et al. Acta Materialia, 2020, 194, 321. 12 Dubuisson P, Carlan Y D, Garat V, et al. Journal of Nuclear Materials, 2012, 428(1-3), 6. 13 Shen Z, Tweddle D, Yu H, et al. Acta Materialia, 2020, 194, 321. 14 Dubuisson P, Carlan Y D, Garat V, et al. Journal of Nuclear Materials, 2012, 428(1-3), 6. 15 Locatelli G, Mancini M, Todeschini N. Energy Policy, 2013, 61, 1503. 16 Azevedo C R F. Engineering Failure Analysis, 2011, 18(8), 1943. 17 Hu G D, Feng R, Li S Z, et al. Hot Working Technology, 2022, 51(18), 6(in Chinese). 胡国栋, 冯锐, 李书志, 等. 热加工工艺, 2022, 51(18), 6. 18 Park D, Huh M, Jung W, et al. Journal of Alloys and Compounds, 2013, 574, 532. 19 Liljestrand L G, Omsén A. Metallurgical Transactions A - Physical Metallurgy and Materials Science, 1975, 6(2). 20 Smabbasi S M, Ashokuhfar. Journal of Iron and Steel Research International, 2007, 6(14), 74. 21 Tu Y W, Zhu L H. Transactions of Materials and Heat Treatment, 2022, 43(12), 125(in Chinese). 涂有旺, 朱丽慧. 材料热处理学报, 2022, 43(12), 125. 22 Wen D H, Li Z, Jiang B B, et al. Materials Characterization, 2018, 144, 86. 23 Ramanathan L V. Corrosion Science, 1993, 35(5-8), 871. 24 Bischoff J, Motta A T. Journal of Nuclear Materials, 2012, 424(1-3), 261. 25 Bischoff J, Motta A T, Eichfeld C, et al. Journal of Nuclear Materials, 2013, 441(1-3), 604. 26 Fujikawa H, Newcomb S B. Oxidation of Metals, 2012, 77(1-2), 85. 27 Aviation Industry Standards of the People's Republic of China. Test Method for Determining the Oxidation Resistance of Steel and Superalloys:hb 5258-2000, China, 2000. 中华人民共和国航空工业标准. 钢及高温合金的抗氧化性测定试验方法:HB 5258-2000, 中国航空工业总公司第301研究所. 2000. 28 Zhang S, Li H, Jiang Z, et al. Materials Letters, 2023, 330, 133253. 29 Su M, Zhao J, Tian Z, et al. Journal of Materials Research and Technology, 2022, 19, 1510. 30 Xu S, Long F, Persaud S Y, et al. Corrosion Science, 2020, 165, 108380. 31 Zhao Q, Qiao Z, Dong J, et al. Fusion Engineering and Design, 2020, 161, 111991. 32 Zhao Y, Chen P, Wen W, et al. Journal of Materials Research and Technology, 2023, 26, 7816. 33 Cai X C, Ding S J, Jin S B, et al. Scripta Materialia, 2021, 204, 114155. 34 Zhang L, Yan W, Shi Q, et al. Corrosion Science, 2020, 167, 108519. 35 Zou D, Zhou Y, Zhang X, et al. Materials Characterization, 2018, 136, 435. 36 Chen H, Wang H, Sun Q, et al. Corrosion Science, 2018, 145, 90. 37 Singh Raman R K, Gnanamoorthy J B. Oxidation of Metals, 1992, 38(5-6), 483. 38 Liu L, Wu S, Dong Y, et al. Corrosion Science, 2016, 104, 236. 39 Behnamian Y, Mostafaei A, Kohandehghan A, et al. Corrosion Science, 2016, 106, 188. 40 Zhang S, Li H, Jiang Z, et al. Journal of Materials Science and Technology, 2022, 115, 103. 41 Teng L D, Zhang T, Zang Q Y, et al. Journal of Iron and Steel Research, 2019, 31(4), 415(in Chinese). 滕铝丹, 张拓, 臧其玉, 等. 钢铁研究学报, 2019, 31(4), 415. 42 Behnamian Y, Mostafaei A, Kohandehghan A, et al. Corrosion Science, 2016, 106, 188. 43 Fu G, Wei L, Shan X, et al. Surface and Coatings Technology, 2016, 294, 8. |
|
|
|