METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Research Progress in Powder Metallurgy Preparation of Tungsten-based Alloy Targets and Magnetron Sputtering Films |
LI Rui1, LI Ruijian1, JIANG Hongqu1, LUO Yuan1 , ZHAO Qi2,*, YI Jianhong1, LIU Yichun1,*
|
1 Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China 2 Kunming Institute of Precious Metals, Kunming 650106, China |
|
|
Abstract Tungsten alloy materialhas become an important material in magnetron sputtering technology for its advantages such as high density, high purity, high melting point and excellent mechanical properties. Its preparation methods includes powder metallurgy, smelting, etc. Among which the powder metallurgy method is wide concerned with its good composition uniformity and fine microstructure. As an advanced film deposition technology, magnetron sputtering is widely used for the preparation of tungsten-based alloy films due to its high efficiency and precise control ability. The thin films of W-Mo, W-Cu, W-Ti and W-B are prepared by magnetron sputtering with tungsten base alloy as the raw material, which have been widely used in electronic devices, carbide coating and plasma physics research. In this paper, several preparation methods of tungsten-based alloy targets were introduced in detail, such as hot pressing, hot isostatic pressing, discharge plasma sintering technology. And then anti-diffusion properties, friction and wear properties, corrosion and oxidation properties of tungsten base alloy target magnetron sputtering film were analyzed, its application im many fields was introduced such as the non-diffusion barrier materials, superconducting materials, plasma-oriented materials, hard coating materials. Finally future broad development prospects in various fields was prospected.
|
Published:
Online: 2025-08-28
|
|
|
|
1 Gudmundsson J T. Plasma Sources Science and Technology, 2020, 29(11), 113001. 2 Chelvanathan P, Shahahmadi S A, Arith F, et al. Thin Solid Films, DOI:10.1016/j.tsf.2017.07.057. 3 Reza M, Sajuri Z, Yunas J, et al. IOP Conference Series:Materials Science and Engineering, DOI:10.1088/1757-899x/114/1/012116. 4 Wang Q X, Liang S H. Vacuum, 2011. 85(11), 979. 5 Kim S, Kwon T, Kim S, et al. International Journal of Refractory Metals and Hard Materials, 2024, 118, 106491. 6 Ivanov E, Del Rio E. International Journal of Refractory Metals and Hard Materials, 2018, 72, 223. 7 Gellerup S, Arnold C L, Cairns E, et al. Vacuum, 2023, 213, 112137. 8 AI Y P. Chemical Physics Letters, 2017, 690, 1. 9 Amirjan M, Zangeneh-madar K, Parvin N E. International Journal of Refractory Metals and Hard Materials, 2009, 27(4), 729. 10 Li Z B, Zhang H, Zhang G H, et al. Metallurgical and Materials Tran-sactions A, 2022, 53(3), 1085. 11 Germain F S, Slosarik S E. The Journal of the Minerals, DOI:10.1007/bf03378159. 12 Manikandan R, Raja Annamalai A. Materials Today Communications, 2024, 39, 108971. 13 Huang Z M, Wang D Z, Wu Z Z, et al. Powder Metallurgy Technology, 2021 39(5), 445(in Chinese). 黄志民, 王德志, 吴壮志, 等. 粉末冶金技术. 2021, 39(5), 445. 14 Dunlop J A, Rensing H. U. S. patent application, US4838935, 1989. 15 Wang Y M, Tang Q H, Zhou P. Journal of Materials Engineering and Performance, 2021, 30(10), 7223. 16 Xu L, Srinivasakannan C, Zhang L, et al. Journal of Alloys and Compounds, 2016, 658, 23. 17 Ma K, Cao X, Yang H, et al. Ceramics International, 2017, 43(12), 8551. 18 Byun J M, Lee E S, Heo Y J, et al. International Journal of Refractory Metals & Hard Materials, 2021, 99, 105602. 19 Wickersham C E, Poole J E, Mueller J J. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 1992, 10(4), 1713. 20 Hu B, Cai G. Materials, 2022, 15(23), 8647. 21 Li X, Wang Q, Wei S, et al. Journal of Alloys and Compounds, 2023, 975, 172571. 22 Dine S, Bernard E, Herlin Boime N, et al. Advanced Engineering Materials, 2018, 20(8), 1701138 23 Wang Y, Tang Q, Chen D, et al. Journal of Thermal Spray Technology, DOI:10.1007/s11666-019-00958-x. 24 Hao Y, Tan C, Yu X, et al. Journal of Alloys and Compounds, 2020, 819, 152975. 25 Müller A V, Dorow-gerspach D, Balden M, et al. Journal of Nuclear Materials, 2022, 566, 153760. 26 Talignani A, Seede R, Whitt A, et al. Additive Manufacturing, 2022, 58, 103009. 27 Kim J Y, Lee E S, Heo Y J, et al. Powder Metallurgy, 2023, 66 (5), 644. 28 Wang Y, Tang Q, Chen D, et al. International Journal of Refractory Me-tals & Hard Materials, 2019, 87. 29 Engwall A M, Shin S J, Bae J, et al. Surface & Coatings Technology, 2019, 363, 191. 30 Pauleau Y. Thin Solid Films, DOI:10.1016/0040-6090(84)90051-8. 31 Bhagat S, Han H, Alford T L. Thin Solid Films, 2006, 515 (4), 1998. 32 Lo C F, Gilman P. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 1999, 17(2), 608. 33 Guidi V, Boscarino D, Comini E, et al. Sensors and Actuators B:Chemical, 2000, 65(1), 264. 34 Su Y H, Kuo T C, Lee W H, et al. Microelectronic Engineering, 2017, 171, 25. 35 Lazarides N, Tsironis G P. Physics Reports, 2018, 752, 1. 36 Suzuki M, Kobayashi N, Mukai K, et al. Journal of the Electrochemical Society, 1990, 137(10), 3213. 37 Kondo S. Journal of Materials Research, DOI:10.1557/jmr.1992.0853. 38 Nishino N. Carbon, DOI:10.1016/s0008-6223(97)82814-x. 39 Zhang W, Qi Y, Zhang L, et al. Surface and Coatings Technology, 2022, 434, 128165. 40 Pero R, Maizza G, Montanari R, et al. Materials, 2020, 13(9), 2137. 41 Zhou Z, Xu Y, Chen X, et al. Ceramics International, 2020, 46 (4), 4095. 42 Yumashev A, Mikhaylov A J P C. Polymer Composites, 2020, 41(7), 2875. 43 Chrzanowska J, Kurpaska Ł, Giyński M, et al. Ceramics International, 2016, 42(10), 12221. 44 Chrzanowska-Giyńska J, Denis P, Woźniacka S, et al. Ceramics International, 2018, 44 (16), 19603. 45 Jiang C, Pei Z, Liu Y, et al. Physica Status Solidi (A)-Applications and Materials Science, 2013, 210(6), 1221. 46 Radziejewska J, Psiuk R, Mościcki T. Coatings, 2020, 10(12), 1231. 47 Mahjabin S, Haque M M, Bashar M S, et al. Energy & Fuels, 2023, 37(24), 19860. 48 Yu H, Yang X, Xiao X, et al. Advanced Materials, 2018, 30(51). 49 Červená M, Čerstvý R, Dvoák T, et al. Journal of Alloys and Compounds, 2021, 888, 161558. 50 Sadovskiy Y, Begrambekov L, Ayrapetov A, et al. Journal of Physics:Conference Series, 2016, 748. 51 Euchner H, Mayrhofer P H, Riedl H, et al. Acta Materialia, 2015, 101, 55. 52 Smolik J, Kacprzyńska-Gołacka J, Sowa S, et al. Coatings, 2020, 10(9), 807. 53 Louro C, Cavaleiro A. Journal of The Electrochemical Society, DOI:10.1149/1.1837394. 54 Serdobintsev A A, Starodubov A V, Kozhevnikov I O, et al. Journal of Physics:Conference Series, 2020, 1697(1), 012054. |
|
|
|