METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Photocatalytic Performance and Mechanism of Z-scheme Composite Thin Films UIO-66-NH2/Ag/Ag3PO4/Ni Under Visible Light Irradiation |
ZHAO Di*, LIU Hongyan, WANG Shujun, SUN Xinyu, ZHANG Zixuan, QI Xueyu, LIU Zifan
|
Faculty of Chemistry and Material Science, Langfang Normal University, Langfang 065000, Hebei, China |
|
|
Abstract The design and synthesis of highly efficient photocatalysts require precise regulation of reaction sites, rapid migration of photo induced car-riers, and strong absorption of visible light. UIO-66-NH2/Ag/Ag3PO4/Ni composite thin film was prepared by a constant current electrodeposition method. The electronic band structure of UIO-66-NH2 and Ag3PO4 matched well. At the same time, nano Ag acted as the separation center of photogenerated charge carriers, forming a Z-scheme photocatalytic system consisting of Ag3PO4, Ag and UIO-66-NH2, which effectively separated photogenerated electron hole pairs and retained strong oxidation-reduction active sites. Therefore, UIO-66-NH2/Ag/Ag3PO4/Ni composite thin film has excellent photocatalytic performance under visible light. In addition, the photoelectrochemical test results indicated that the UIO-66-NH2/Ag/Ag3PO4/Ni composite thin film had a faster carrier separation rate and a lower catalytic reduction reaction barrier for dissolved O2. The results of active species experiments indicated that ·O2- and holes (h+) played a major role in the photocatalytic degradation, further confirming the Z-scheme photocatalytic degradation mechanism of the system.
|
Published: 25 April 2025
Online: 2025-04-18
|
|
|
|
1 Chen D, Cheng Y, Zhou N, et al. Journal of Cleaner Production, 2020, 268, 121725. 2 Albero J, Peng Y, García H. ACS Catalysis, 2020, 10, 5734. 3 Fajrina N, Tahir M. International Journal of Hydrogen Energy, 2019, 44 (2), 540. 4 Wang G, Chang J, Tang W, et al. Journal of Physics D: Applied Physics, 2022, 55(29), 293002. 5 Wang M, Yao H L, Zhang L L, et al. Journal of Hazardous Materials, 2020, 383, 121149. 6 Javed H M A, Hameed A, Afzaal M, et al. International Journal of Modern Physics B, 2022, 37(17), 2350162. 7 Zhao D, Chen Y, Li A, et al. Materials Chemistry and Physics, 2021, 263, 124411. 8 Li Y, Li M, Nan R, et al. Materials Chemistry and Physics, 2022, 279, 125761. 9 Ma Y, Liu F, Liu Y, et al. Chemical Engineering Journal, 2021, 414, 128802. 10 Li C, Ding G, Liu X, et al. Chemical Engineering Journal, 2022, 435, 134740. 11 Chai Y, Li L, Shen J, Zhang Y, et al. ACS Applied Energy Materials, 2022, 5, 3748. 12 Tong Z W, Yang D, Sun Y Y, et al. Physical Chemistry Chemical Physics, 2015, 17, 12199. 13 Liu J X, Wang Y F, Wang Y W, et al. Acta Physico-Chimica Sinica, 2014, 30(4), 729 (in Chinese). 刘建新, 王韵芳, 王雅文, 等. 物理化学学报, 2014, 30(4), 729. 14 Wang Z, Hu T, Dai K, et al. Chinese Journal of Catalysis, 2017, 38, 2021. 15 Liu G, Zhao X, Zhang J, et al. Dalton Transactions, 2018, 47, 6225. 16 Sha Z, Chan H S, Wu J. Journal of Hazardous Materials, 2015, 299, 132. 17 Ji P, Drake T, Murakami A, et al. Journal of the American Chemical Society, 2018, 140, 10553. 18 Zhang N, Zhang X, Gan C, et al. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 376, 305. 19 Zhou Y C, Wang C C, Wang P, et al. Chinese Journal of Inorganic Chemistry, 2020, 36(11), 2100 (in Chinese). 周云彩, 王崇臣, 王鹏, 等. 无机化学学报, 2020, 36(11), 2100. 20 Cui S, Ye Z, Qian C, et al. Journal of Materials Science: Materials in Electronics, 2018, 29, 15138. 21 Xu X Y, Chu C, Fu H, et al. Chemical Engineering Journal, 2018, 350, 436. 22 Wang Y, Kong X, Jiang M, et al. Inorganic Chemistry Frontiers, 2020, 7, 437. 23 Zhu P, Luo D, Liu M, et al. Separation and Purification Technology, 2022, 297, 121503. 24 Zhang M F, Zhang Z M, Jia J W, et al. Nonferrous Metals Science and Engineering, 2020, 11(3), 18(in Chinese). 张梦凡, 张振民, 贾静雯, 等. 有色金属科学与工程, 2020, 11(3), 18. 25 Hu J, Chen C, Zheng Y, et al. Small, 2020, 16, 2002988. 26 Zhou X, Feng T, Gao S T, et al. Chinese Journal of Inorganic Chemistry, 2016, 32(5), 769 (in Chinese). 周欣, 冯涛, 高书涛, 等. 无机化学学报, 2016, 32(5), 769. 27 Li A C, Zhao D, Liu P P, et al. The Chinese Journal of Nonferrous Metals, 2015, 25(8), 2196 (in Chinese). 李爱昌, 赵娣, 刘盼盼, 等. 中国有色金属学报, 2015, 25(8), 2196. 28 Zhao D, Li A, Wu M, et al. Reaction Kinetics Mechanisms & Catalysis, 2018, 124, 347. 29 Ren J, Meng Y, Zhang X, et al. Separation and Purification Technology, 2022, 296, 121423. 30 Cao J, Luo B, Lin H, et al. Journal of Hazardous Materials, 2012, 217-218, 107. 31 Zheng J, Lei Z. Applied Catalysis B: Environmental, 2018, 237, 1. 32 Zhao D, Dai F C, Li A C, et al. New Journal of Chemistry, 2020, 44, 9502. 33 Katsumata H, Sakai T, Suzuki T, et al. Industrial & Engineering Che-mistry Research, 2014, 53, 8018. 34 Zhao D, Fu L, Liu H Y, et al. The Chinese Journal of Nonferrous Metals, 2021, 31(12), 3614 (in Chinese). 赵娣, 傅丽, 刘洪燕, 等. 中国有色金属学报, 2021, 31(12), 3614. 35 Zhao D, Chen Y, Liu H, et al. Functional Materials Letters, 2022, 15(2), 2250009. |
|
|
|