METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Influence of Hydrogen on Fatigue Crack Growth Behavior of TC4ELI Titanium Alloy |
YANG Riming1,2, SHEN Xiuli1,2, DONG Shaojing1,2,*
|
1 School of Energy and Power Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China 2 Collaborative Innovation Center for Advanced Aero-Engine, Beijing 100191, China |
|
|
Abstract The new TC4ELI titanium alloy exhibits significant potential for application in hydrogen fuel engines, but it faces the risk of hydrogen damage. Therefore, investigating the influence of hydrogen on fatigue crack growth behavior is of great significance. In this work, taking the TC4ELI titanium alloy treated by high-temperature gaseous hydrogen as samples. The microstructure evolution, hydride formation and distribution of the samples were analyzed using techniques such as X-ray diffraction and secondary ion mass spectrometer. Fatigue crack growth tests at different loading frequencies were carried out, furthermore, the crack growth path and fracture morphology were combined for further analysis. The results show that:(1) hydrogen charging promotes the transformation of α phase into β phase within TC4ELI, resulting in an increased volume fraction of β phase. Hydrogen atoms predominantly accumulate in the β phase and at grain boundaries, leading to the precipitation of hard and brittle δ hydrides. (2)The increase in β phase volume fraction along with δ hydride precipitation causes a transition in crack growth of hydrogen-charged TC4ELI from the transgranular mode to the mixed mode involving both transgranular and intergranular, thereby accelerating the rate of fatigue crack growth. (3)When the loading frequency is below 0.1 Hz, there is sufficient time for hydrogen to diffuse and accumulate at the crack tip region, which significantly enhances its effect on accelerating fatigue crack growth rate in TC4ELI.
|
Published: 25 July 2025
Online: 2025-07-29
|
|
|
|
1 Cao G J, Wang Y H, Sun X J. Aerospace Power, 2022(2), 29 (in Chinese). 曹冠杰, 王业辉, 孙小金. 航空动力, 2022(2), 29. 2 Li W, Cao J, Xiao W. Aerospace Power, 2022(2), 39 (in Chinese). 李维, 曹俊, 肖为. 航空动力, 2022(2), 39. 3 Li C, Zhao L, Xu L Y, et al. Materials Reports, DOI:10. 11896/cldb. 24040126 (in Chinese). 李丛, 赵雷, 徐连勇, 等. 材料导报, DOI:10. 11896/cldb. 24040126. 4 Wang J, Liu X Y, Gao L Q, et al. Material Protection, 2020, 53(11), 98 (in Chinese). 王佳, 刘晓勇, 高灵清, 等. 材料保护, 2020, 53(11), 98. 5 Nie P, Yang S Y, Guo Y Q, et al. Journal of Changsha University of Science & Technology (Natural Science), DOI:10. 19951/j. cnki. 1672-9331. 20231225002(in Chinese). 聂鹏, 杨世源, 郭永强, 等. 长沙理工大学学报(自然科学版), DOI:10. 19951/j. cnki. 1672-9331. 20231225002. 6 Xu A J, Wan H F, Liang C Z, et al. Journal of Netshape Forming Engineering, 2020, 12(6), 145 (in Chinese). 许爱军, 万海峰, 梁春祖, 等. 精密成形工程, 2020, 12(6), 145. 7 Lyu Z Y, Xiong J J, Zhao Y G, et al. Journal of Aeronautical Materials, 2018, 38(4), 123 (in Chinese). 吕志阳, 熊峻江, 赵延广, 等. 航空材料学报, 2018, 38(4), 123. 8 Yang F, Zhang C, Zhang B C, et al. Acta Energiae Solaris Sinica, 2023, 44(10), 557 (in Chinese). 扬帆, 张超, 张博超, 等. 太阳能学报, 2023, 44(10), 557. 9 Eli B, Nissim N, Brian R, et al. International Journal of Hydrogen Energy, 2021, 46(53), 27234. 10 Nguyen T D, Singh C, Lee D H, et al. Materials, 2024, 17(5), 1178. 11 Zhang H B, Leygraf C, Jin Y, et al. International Journal of Hydrogen Energy, 2023, 48(92), 36169. 12 Liu X Z, Han E H, Song Y W, et al. Electrochimica Acta, 2023, 464, 142916. 13 Muravev V I, Bakhmatov P V, Grigorev V V, et al. Welding International, 2021, 35(10-12), 459. 14 Feng X D, Shi Y, Zhang W Z, et al. Crystals, 2023, 13(3), 512. 15 Dong Y C, Huang S, Wang Y Y, et al. Materials Characterization, 2022, 194, 112357. 16 Bai G Q, Wang Q Y, Deng H Q, et al. Materials Reports, 2020, 34(22), 22130 (in Chinese). 白光乾, 王秋岩, 邓海全, 等. 材料导报, 2020, 34(22), 22130. 17 Fu Z H, Wu P F, Yang Q K, et al. Corrosion Science, 2024, 227, 111745. 18 Fu Z H, Wu P F, Zhang Y, et al. International Journal of Fatigue, 2022, 160, 106848. 19 Matsunaga H, Takakuwa O, Yamabe J, et al. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2017, 375(2098), 20160412. 20 Liu P T, Zhao X J, Liu X, et al. Journal of Aeronautical Materials, 2011, 31(3), 52 (in Chinese). 刘鹏涛, 赵秀娟, 刘昕, 等. 航空材料学报, 2011, 31(3), 52. 21 Liu Q M. Hydrogen induced crack propagation in TIG welded joints of titanium alloy plates. Ph. D. Thesis, Xi'an University of Architecture and Technology, China, 2018 (in Chinese). 刘全明. 钛合金板氩弧焊接接头氢致裂纹扩展行为研究. 博士学位论文, 西安建筑科技大学, 2018. |
|
|
|