Materials Reports 2022, Vol. 36 Issue (Z1): 21050183-6 |
INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Research Progress on Preparation Technology of Wide-bandgap Semiconductor β-Ga2O3 Single Crystal |
YAN Shiyu1,2, JI Wentao1,2, XIE Keqiang1,2, YUAN Xiaolei1,2
|
1 Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China 2 National Engineering Laboratory of Vacuum Metallurgy, Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China |
|
|
Abstract Ga2O3 material has become the third-generation wide-bandgap semiconductor for power components after SiC and GaN due to its excellent optoelectronic properties, and has broad application prospects in aerospace, information communication, medical and health and other fields. The preparation methods of β-Ga2O3 single crystal mainly include Verneuil method, Czochralski method, edge-defined film growth method, floating zone method, vertical Bridgeman method and chemical vapor transport method. β-Ga2O3 is easily decomposed at high temperature, which brings certain difficulties to the preparation of large-sized and high-quality β-Ga2O3 single crystals. In this paper, the preparation methods of β-Ga2O3 single crystal were introduced in detail, and the advantages and disadvantages of each method were analyzed. The application of β-Ga2O3 single crystal in power devices was summarized, and certain reference for optimizing its preparation process and expanding its application prospect was provided.
|
Published: 05 June 2022
Online: 2022-06-08
|
|
Fund:National Natural Science Foundation of China (51764033). |
|
|
1 Playford H Y, Hannon A C, Barney E R, et al. Chemistry, 2013 , 19(8), 2803. 2 Galazka Z. Semiconductor Science and Technology, 2018, 33(11), 113001. 3 Oishi T, Koga Y, Harada K, et al. Applied Physics Express. 2015, 8(3), 031101. 4 孙学耕, 张智群. 半导体技术, 2018, 43(4), 241. 5 Bartic M, Toyoda Y, Baban C I, et al. Japanese Journal of Applied Phy-sics, 2006, 45(6R), 5186. 6 Suzuki R, Nakagomi S, Kokubun Y, et al. Applied Physics Letters, 2009, 94(22), 222102. 7 Yao Y, Ishikawa Y, Sugawara Y. Journal of Applied Physics, 2019, 126(20), 205106. 8 Ghose S. Growth and characterization of wide bandgap semiconductor oxide thin films. Ph.D. Thesis, Texas State University, USA, 2017. 9 Stepanov S, Nikolaev V, Bougrov V, et al. Reviews On Advanced Mate-rials Science, 2016, 44, 63. 10 Pearton S J, Yang J C, Cary P H, et al. Applied Physics Reviews, 2018, 5(1), 011301. 11 Jang S, Jung S, Beers K, et al. Journal of Alloys and Compounds, 2018, 731, 118. 12 穆文祥. β-Ga2O3单晶的生长、加工及性能研究. 博士学位论文, 山东大学, 2018. 13 Mu W, Jia Z, Yin Y, et al. CrystEngComm, 2017, 19(34), 5122. 14 Higashiwaki M, Sasaki K, Kuramata A, et al. Physica Status Solidi (A), 2014, 211(1), 21. 15 Ohba E, Kobayashi T, Kado M, et al. Japanese Journal of Applied Phy-sics, 2016, 55(12), 1202BF. 16 Fu B, Jia Z T, Mu W X, et al. Journal of Semiconductors, 2019, 40(1), 011804. 17 Mohamed H F, Xia C, Sai Q, et al. Journal of Semiconductors, 2019, 40(1), 011801. 18 Müller G, Friedrich J. In:Encyclopedia of condensed matter physics, Elsevier, UK, 2005, pp. 262. 19 邱鹏. 稀土金属助熔剂法制备SiC单晶的物理化学基础研究. 硕士学位论文, 昆明理工大学, 2020. 20 Nassau K. Journal of Crystal Growth, 1972, 13,12. 21 Chase A O. Journal of the American Ceramic Society, 2010, 47(9), 470. 22 Lorenz M R, Woods J F, Gambino R J. Journal of Physics and Chemistry of Solids, 1967, 28(3), 403. 23 Harwig T, Wubs G J, Dirksen G J. Solid State Communications, 1976, 18(9), 1223. 24 Czochralski J. Zeitschrift für Physikalische Chemie, 1918, 92, 219. 25 Tomm Y, Reiche P, Klimm D, et al. Journal of Crystal Growth, 2000, 220(4), 510. 26 Galazka Z, Uecker R, Klimm D, et al. ECS Journal of Solid State Science and Technology, 2017, 6(2), Q3007. 27 Mu W X, Jia Z T, Yin Y R, et al. CrystengComm, 2019, 21(17), 2762. 28 Tang X, Liu B T, Yu Y, et al. Crystals, 2020, 11(1), 25. 29 Aida H, Nishiguchi K, Takeda H, et al. Japanese Journal of Applied Physics, 2008, 47(11R), 8506. 30 唐慧丽, 何诺天, 罗平, 等.人工晶体学报, 2017, 46(12), 232. 31 Kuramata A, Koshi K, Watanabe S, et al. Japanese Journal of Applied Physics, 2016, 55(12), 1202A2. 32 Tang H L, He N T, Zhang H, et al. CrystEngComm, 2020, 22(5), 924. 33 Fu B, Jian G Z, Mu W X, et al. Journal of Alloys and Compounds, 2022, 896, 162830. 34 Víllora E G, Shimamura K, Yoshikawa Y, et al. Journal of Crystal Growth, 2004, 270(3-4), 420. 35 Zhang J G, Li B, Xia C T, et al. Journal of Physics and Chemistry of So-lids, 2006, 67(12), 2448. 36 Oda H, Kimura N, Yasukawa D, et al. Physica Status Solidi(A), 2017, 214(3), 1600670. 37 Usui Y, Nakauchi D, Kawano N, et al. Journal of Physics and Chemistry of Solids, 2018, 117, 36. 38 吴庆辉, 唐慧丽, 苏良碧,等. 人工晶体学报, 2016, 45(6), 1440. 39 Mu W, Jia Z, Cittadino G, et al. Crystal Growth & Design, 2018, 18(5), 3037. 40 Peelaers H, Van de Walle C G. Physical Review B, 2016, 94(19), 195203. 41 Long X J, Niu W L, Wan L Y, et al. Crystals, 2021, 11(2), 135. 42 Cui H Y, Mohamed H F, Xia C T, et al. Journal of Alloys and Compounds, 2019, 788, 925. 43 Luchechko A, Vasyltsiv V, Kostyk L, et al. ECS Journal of Solid State Science and Technology, 2020, 9(4), 045008. 44 唐慧丽, 吴庆辉, 罗平, 等. 无机材料学报, 2017, 32(6), 621. 45 Wang B G, Look D, Farlow G. Journal of Physics D: Applied Physics, 2020, 53(44), 444001. 46 Zhang H, Tang H L, He N T, et al. Chinese Physics B, 2020, 29(8), 087201. 47 Yanagida T, Kawaguchi N. Japanese Journal of Applied Physics, 2019, 59(SC), SCCB20. 48 Hoshikawa K, Ohba E, Kobayashi T, et al. Journal of Crystal Growth, 2016, 447, 36. 49 Hoshikawa K, Kobayashi T, Matsuki Y, et al. Journal of Crystal Growth, 2020, 545, 125724. 50 Su J, Liu T, Liu J M , et al. Journal of Semiconductors, 2016, 37(10), 103004. 51 Juskowiak H, Pajaczkowska A. Journal of Materials Science, 1986, 21(10), 3430. 52 Pajaczkowska A, Juskowiak H. Journal of Materials Science, 1986, 21(10), 3435. 53 Pajaczkowska A, Juskowiak H. Journal of Crystal Growth, 1986, 79(1-3), 421. 54 Juskowiak H, Pajaczkowska A. Materials Research Bulletin, 1988, 23(7), 1071. 55 Higashiwaki M, Sasaki K, Murakami H, et al. Semiconductor Science and Technology, 2016, 31(3), 034001. 56 Mastro M A, Kuramata A, Calkins J, et al. ECS Journal of Solid State Science and Technology, 2017, 6(5), 356. 57 Sasaki K, Higashiwaki M, Kuramata A, et al. IEEE Electron Device Letters, 2013, 34(4), 493. 58 张晋, 胡壮壮, 穆文祥, 等. 人工晶体学报, 2020, 49(11), 2194. 59 Ke Z, Abhishek V, Uttam S. IEEE Electron Device Letters, 2018, 39(9), 1385. 60 Hu Z Y, Nomoto K, Li W S, et al. IEEE Electron Device Letters, 2018, 39(6), 869. 61 Yang C, Liang H W, Zhang Z Z, et al. RSC Advances, 2018, 8(12), 6341. 62 Yanagida T, Okada G, Kato T, et al. Applied Physics Express, 2016, 9(4), 042601. |
|
|
|