REVIEW PAPER |
|
|
|
|
|
Fabrication of Carbon Microcoils: Morphology Control and Growth Mechanism |
LUO Yanyu, LI Cailiang, CHEN Guohua
|
College of Materials Science and Engineering, Huaqiao University, Xiamen 361021 |
|
|
Abstract Carbon microcoils (CMCs) attracts researchers’ attention due to their unique three-dimensional helical structure. The research of the carbon microcoils on the fabrication methods and influence play a prominent role in discussing the growth mechanism.CMCs is a kind of carbon fiber with regular coils or twisted structures, and mainly includes single-helix and double-helix carbon microcoils. CMCs not only has the similar excellent properties as carbon fiber, such as low density, high tensile strength, high tensile modulus, high thermal conductivity, high electric conductivity, electromagnetic shielding, but also shows anisotropy in mechanical properties, thermal properties and electrical properties. Carbon microcoils perform good elasticity, unique electromagnetism and biological catalysis, indicating its potential applications in electronic devices, chiral catalytic, intelligent materials, stealth absorbing materials, high performance and multifunctional composites. However, it has been the difficulty and the key points of the research to obtain the regular helix shape, chiral resolving, dispersion and mass control preparation of CMCs. In recent years, researchers have explored the growth mechanism and growth kinetics of CMCs by constructing a applicable growth model, and the result reveals that the accelerant , crystal form and size of catalyst have crucial impact on CMCs structure. Recently, CMCs with regular morphology and homogeneous structure has been obtained through regulating the fabrication conditions, and successfully applied in various fields. In order to enhance the comprehensive properties of composites, CMCs is added in working as filler, which can extend the composites application. This review offers a retrospection of the research efforts with respect to thefabrication and growth mechanism of CMCs, and provides a accuratel descriptions about the fabrication factors and the research on the growth mechanisms of CMCs. The growth mechanisms of CMCs are speculated and discussed through the difference of CMCs from various conditions of preparation methods, types of carbon sources, reaction temperature, catalysts, accelerators and the ratio of carbon source to hydrogen gas intake. In this review, the future development of CMCs and problems which needs to be solved at this stage are proposed,which could be the reference for controllable preparation and industrialization of CMCs.
|
Published: 10 May 2018
Online: 2018-07-06
|
|
|
|
1 Davis W R, Slawson R J, Rigby G R. An unusual form of carbon[J].Nature,1953,171(4356):756. 2 Baker R T K, Barber M A, Harris P S, et al. Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene[J].Journal of Catalysis,1972,26(1):51. 3 Baker R T K, Waite R J. Formation of carbonaceous deposits from the platinum-iron catalyzed decomposition of acetylene[J].Journal of Catalysis,1975,37(1):101. 4 Kim M S, Rodriguez N M, Baker R T K. The role of interfacial phenomena in the structure of carbon deposits[J].Journal of Catalysis,1992,134(1):253. 5 Motojima S, Kawaguchi M, Nozaki K, et al. Preparation of coiled carbon fibers by catalytic pyrolysis of acetylene, and its morphology and extension characteristics[J].Carbon,1991,29(29):379. 6 Motojima S, Asakura S, Hirata M, et al. Effect of metal impurities on the growth of micro-coiled carbon fibres by pyrolysis of acetylene[J].Materials Science & Engineering B,1995,34(1):L9. 7 Motojima S, Itoh Y, Asakura S, et al. Preparation of micro-coiled carbon fibres by metal powder-activated pyrolysis of acetylene containing a small amount of sulphur compounds[J].Journal of Ma-terials Science,1995,30(20):5049. 8 Chen X Q, Saito T, Kusunoki M, et al. Three-dimensional vapor growth mechanism of carbon microcoils[J].Journal of Materials Research,1999,14(11):4329. 9 Chen X Q, Motojima S. The growth patterns and morphologies of carbon micro-coils produced by chemical vapor deposition[J].Carbon,1999,37(11):1817. 10 Chen X Q, Motojima S, Iwanaga H. Carbon coatings on carbon micro-coils by pyrolysis of methane and their properties[J].Carbon,1999,37(11):1825. 11 Tang N J, Yang Y, Lin K, et al. Synthesis of plait-like carbon nanocoils in ultrahigh yield, and their microwave absorption properties[J].Journal of Physical Chemistry C,2008,112(27):10061. 12 Li D W, Pan L, Qian J, et al. Highly efficient synthesis of carbon nanocoils by catalyst particles prepared by a sol-gel method[J].Carbon,2010,48(1):170. 13 Motojima S, Hirata M, Iwanaga H. Impurity-activated chemical vapor growth of micro-coiled carbon fibers[J].Journal of Chemical Vapor Deposition,1996,3(2):87. 14 Motojima S, Niwa T. Method and apparatus for manufacturing carbon fiber coils:EP,0982416[P].1999-09-02. 15 Chen X Q, Motojima S. Micro-structure and some surface properties of micro-helix carbon fibers[J].Materials Review,2000,14(9):56(in Chinese) 陈秀琴,元岛栖二.微旋管状碳纤维的微细构造和表面特性[J].材料导报,2000,14(9):56. 16 Motojima S,Chen X Q. Three-dimensional growth mechanism of cosmo-mimetic carbon microcoils obtained by chemical vapor deposition[J].Journal of Applied Physics,1999,85(7):3919. 17 Motojima S,Chen X Q, Yang S M, et al. Properties and potential applications of carbon microcoils/nanocoils[J].Diamond & Related Materials,2004,13(11-12):1989. 18 Bi H, Kou K C, Zhang J Q, et al. Synthesis of micro-coiled carbon fibers by CVD[J].Journal of Synthetic Crystals,2007,36(3):559(in Chinese) 毕辉,寇开昌,张教强,等.CVD法制备微螺旋炭纤维的研究[J].人工晶体学报,2007,36(3): 559. 19 Liu Y, Shen Z. Preparation of carbon microcoils and nanocoils using activated carbon nanotubes as catalyst support[J].Carbon,2005,43(7):1574. 20 Chen Y, Liu C, Du J H, et al. Preparation of carbon microcoils by catalytic decomposition of acetylene using nickel foam as both catalyst and substrate[J].Carbon,2005,43(9):1874. 21 李文军,郭燕川,徐海涛,等.新型手征吸波材料—微碳卷的合成与表征[C]∥第二届全国隐身功能材料学术研讨会会议文集.北京:中国化学会,2004:42. 22 Kuzuya C, Kohda M, Hishikawa Y, et al. Preparation of carbon micro-coils involving the decompositionof hydrocarbons using PACT (plasma and catalyst technology) reactor[J].Carbon,2002,40(11):1071. 23 Okada Y, Takeuchi K, Yamanashi H, et al. Formation of carbon whiskers by heating with a carbon dioxide laser[J].Journal of Ma-terials Science Letters,1992,11(24):1715. 24 李春忠,王兰娟,胡彦杰,等.制备螺旋纳米碳纤维的方法:中国,100999315[P].2007-07-18. 25 Liu L, He P, Zhou K, et al. Microwave absorption properties of carbon fibers with carbon coils of different morphologies (double microcoils and single nanocoils) grown on them[J].Journal of Materials Science,2014,49(12):4379. 26 Furuya Y, Hashishin T, Iwanaga H, et al. Interaction of hydrogen with carbon coils at low temperature[J].Carbon,2004,42(2):331. 27 Shibagaki K, Motojima S, Umemoto Y, et al. Outermost surface microstructure of as-grown, heat-treated and partially oxidized carbon microcoils[J].Carbon,2001,39(9):1337. 28 Li N, Kou K C, Chao M, et al. Preparation and characterization of micro-coiled carbon fibers[J].Journal of Inorganic Materials,2012,27(5):541(in Chinese) 李宁,寇开昌,晁敏,等.微螺旋碳纤维的制备与表征[J].无机材料学报,2012,27(5):541. 29 Wu F Y, Du J H, Liu C G, et al. The microstructure and energy storage characteristics of micro-coiled carbon fibers[J].New Carbon Materials,2004,19(2):81(in Chinese) 吴法宇,杜金红,刘辰光,等.螺旋炭纤维的微观结构与储能特性[J].新型炭材料,2004,19(2):81. 30 Yang S M, Hasegawa M, Chen X Q, et al. Synthesis and morphology of carbon microcoils produced using methane as a carbon source[J].Carbon,2007,45(7):1592. 31 Chen X Q, Hasegawa M, Yang S M, et al. Preparation of carbon microcoils by catalytic methane hot-wire CVD process[J].Thin Solid Films,2008,516(5):714. 32 Chen X Q, Motojima S. Growth of carbon micro-coils by pre-pyrolysis of propane[J].Journal of Materials Science,1999,34(15):3581. 33 Ge M, Shen Z M. Study of carbon micro-coils prepared by a vapor phase catalytic cracking process[J].New Carbon Materials,2003,18(1):31(in Chinese) 戈敏,沈曾民.气相催化裂解法制备微米级螺旋形炭纤维的研究[J].新型炭材料,2003,18(1):31. 34 Jian X, Wang D, Liu H, et al. Controllable synthesis of carbon coils and growth mechanism for twinning double-helix catalyzed by Ni nanoparticle[J].Composites Part B Engineering,2014,61(5):350. 35 Hui B, Kai C K, Ostrikov K, et al. Unconventional Ni-P alloy-catalyzed CVD of carbon coil-like micro- and nano-structures[J].Ma-terials Chemistry & Physics,2009,116(2):442. 36 Cui R, Li D, Fu X, et al. Growth of acarbon micro- and nanocoils mixture using NiSO4 as the catalyst precursor[J].Chemical Vapor Deposition,2015,21(1-2-3):78. 37 Yang S M, Ozeki I, Chen X Q, et al. Preparation of single-helix carbon microcoils by catalytic CVD process[J].Thin Solid Films,2008,516(5):718. 38 Yang S M, Chen X Q, Motojima S, et al. Morphology and microstructure of spring-like carbon micro-coils/nano-coils prepared by catalytic pyrolysis of acetylene using Fe-containing alloy catalysts[J].Carbon,2005,43(4):827. 39 Yang S M, Chen X Q, Motojima S. Morphology of zigzag carbon nanofibers prepared by catalytic pyrolysis of acetylene using Fe-group containing alloy catalysts[J].Diamond & Related Materials,2004,13(1):85. 40 Yang S M, Chen X Q, Katsuno T, et al. Controllable synthesis of carbon microcoils/nanocoils by catalysts supported on ceramics using catalyzed chemical vapor deposition process[J].Materials Research Bulletin,2007,42(3):465. 41 Zhang M, Nakayama Y, Pan L. Synthesis of carbon tubule nanocoils in high yield using iron-coatedIndium Tin oxide as catalyst[J].Japanese Journal of Applied Physics,2000,39(12A):L1242. 42 Li D, Pan L, Qian J, et al. Highly efficient synthesis of carbon nanocoils by catalyst particles prepared by a sol-gel method[J].Carbon,2010,48(1):170. 43 Yang S M, Chen X Q, Motojima S. Morphology of the growth tip of carbon microcoils/nanocoils[J].Diamond & Related Materials,2004,13(11-12):2152. 44 Kanada R, Pan L, Akitab S, et al. Synthesis of multiwalled carbon nanocoils using codeposited thin film of Fe-Sn as catalyst[J].Japanese Journal of Applied Physics,2008,47(4),1949. 45 Qi X, Zhong W, Yao X, et al. Controllable and large-scale synthesis of metal-free carbon nanofibers and carbon nanocoils over water-soluble NaxKy, catalysts[J].Carbon,2012,50(2):646. 46 Sun J, Koós A A, Dillon F, et al. Synthesis of carbon nanocoil forests on BaSrTiO3 substrates with the aid of a Sn catalyst[J].Carbon,2013,60(12):5. 47 Zhou X H, Cui G L, Zhi L J, et al. Large-area helical carbon microcoils with superhydropho-bicity over a wide range of pH values[J].New Carbon Materials,2007,22(1):1. 48 Yong Q, Xin J, Cui Z. Low-temperature synthesis of amorphous carbon nanocoils via acetylene coupling on copper nanocrystal surfaces at 468 K: A reaction mechanism analysis[J].Journal of Physical Chemistry B,2005,109(46):21749. 49 Qi X, Xu J, Zhong W, et al.High yield synthesis and photoluminescence properties of carbon coils over Al2O3 substrates[J].Diamond & Related Materials,2015,51:30. 50 Oliphant C J, Arendse C J, Malgas G F, et al. Dual catalytic purpose of the tungsten filament during the synthesis of single-helix carbon microcoils by hot-wire CVD[J].Journal of Nanoscience & Nanotechnology,2009,9(10):5870. 51 Motojima S, Asakura S, Kasemura T, et al. Catalytic effects of metal carbides oxides and Ni single crystal on the vapor growth of micro-coiled carbon fibers[J].Carbon,1996,34(3):289. 52 Yang S M, Chen X Q, Kikuchi N, et al. Catalytic effects of various metal carbides and Ti compounds for the growth of carbon nanocoils (CNCs)[J].Materials Letters,2008,62(10-11):1462. 53 Motojima S, Hasegawa I, Kagiya S, et al. Preparation of coiled carbon fibers by pyrolysis of acetylene using a Ni catalyst and sulfur or phosphorus compound impurity[J].Applied Physics Letters,1993,62(19):2322. 54 Motojima S, Hasixgawa I, Kagiya S, et al. Vapor phase preparation of micro-coiled carbon fibers by metal powder catalyzed pyrolysis of acetylene containing a small amount of phosphorus impurity[J].Carbon,1995,33(8):1167. 55 Chen X Q. The micro-morphologies of micro-helix carbon fibers prepared in a vapor phase[J].New Carbon Materials,2000,15(3):23(in Chinese). 陈秀琴.CVD法制备微旋管状炭纤维的微观形貌[J].新型炭材料,2000,15(3):23. 56 Shibagaki K, Motojima S. Distribution of sulfur in bulk carbon microcoils[J].Carbon,2001,39(10):1605. 57 In-Hwang W, Yanagida H, Motojima S. Vapor growth of carbon micro-coils by the Ni catalyzed pyrolysis of acetylene using rotating substrate[J].Materials Letters,2000,43(1-2):11. 58 In-Hwang W,Chen X Q, Kawabe K, et al. Effect of external electromagnetic field and bias voltage on the chemical vapor growth of the carbon micro-coils and their properties[J].Materials Science & Engineering B,2001,86(1):1. 59 Jeon Y C, Kim S H. The formation of the carbon microcoils without the catalyst on the mesh-type stainless steel substrate[J].Advanced Materials Research,2014,894:116. 60 Kawaguchi M, Nozaki K, Motojima S, et al. A growth mechanism of regularly coiled carbon fibers through acetylene pyrolysis[J].Journal of Crystal Growth,1992,118:309. 61 Chen X Q, Yang S M, Motojima S. Morphology and growth models of circular and flat carbon coils obtained by the catalytic pyrolysis of acetylene[J].Materials Letters,2002,57(1):48. 62 Muneaki H.Growth kinetics of carbon microcoils[D].Dayton:University of Dayton,2014. 63 Su G, Du J H, Fan Y Y, et al. Comparing of growth mechanism of carbon nanofibers prepared by different catalysts[J].Chinese Journal of Material Research,2001,15(6):623(in Chinese). 苏革,杜金红,范月英,等.用不同催化剂制备纳米炭纤维的生长机理[J].材料研究学报,2001,15(6):623. 64 In-Hwang W, Kuzuya T, Iwanaga H, et al. Oxidation characteristics of the graphite micro-coils, and growth mechanism of the carbon coils[J].Journal of Materials Science,2001,36(4):971. 65 Luo Q M, Liu D Y, Wang H X, et al. Effect of sulfur element on solid catalytic growth mechanism of micro-coiled carbon fibers[J].Carbon,2008,1:43(in Chinese). 罗启梅,刘登友,王辉宪,等.硫在螺旋炭纤维固相催化生长机理中的作用[J].炭素,2008,1:43. (责任编辑 谢 欢)
Yanyu Luo received her B E degree in applied chemistry from Huaqiao University in 2015. She is postgraduate student in the College of Materials Science and Engineering, Huaqiao University and under the supervision of Prof. Guohua Chen. Her research field is preparation and application of functional materials. 罗妍钰,2015年毕业于华侨大学,获得工学学士学位。现为华侨大学材料科学与工程学院硕士研究生,在陈国华教授指导下进行研究。目前主要的研究领域为功能材料制备与应用。
Guohua Chen received the B E degree from Huaqiao University in 1984 and received the Ph D degree in Materials Sciencse and Engineering at Tianjin University. He was selected to the ministry of education in the new century excellent talents support program in 2004, and joined “double hundred” talent project in Fujian province in 2016. He is also the member of the expert committee and standard committee in the Chinese graphene industry innovation alliance, director of the graphene powder and composite materials’ research center of Fujian province, He has been in charge of five National Natural Science Foundation projects and sevral Science and Technology projects in Fujian province. His research interests focus in the exfoliation of graphite and the preparation of graphene and the composite functional materials. He has published more than 80 papers abstracted in SCI, and with 3 500 total cited. |
|
|
|