INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Preparation and Application of One-dimensional HfC, ZrC, and TaC |
REN Jincui*, WU Yisheng, LI Xinyi, TANG Yanzi
|
College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China |
|
|
Abstract HfC, ZrC and TaC exhibit excellent properties such as ultra-high melting point, good high temperature resistance, oxidation resistance, chemical corrosion resistance and high mechanical strength. One-dimensional HfC, ZrC and TaC not only enjoy excellent performance of their bulk materials but also have good mechanical properties of one-dimensional materials. Therefore, they have attracted extensive attention as toughening materials, high temperature protection materials, electronic materials, electrochemical catalytic materials and hydrogen storage material. Preparation methods of one-dimensional HfC, ZrC and TaC by chemical vapor deposition (CVD) methods, organic precursor transformation method and molten salt method are reviewed. Research progress of one-dimensional HfC, ZrC and TaC used as toughening and strengthening material, electrode material and electrocatalytic material is reviewed. Existing problems of one-dimensional HfC, ZrC and TaC are discussed, such as high cost and low utilization rate of raw material and complex preparation process. Development trend of the future research direction of one-dimensional HfC, ZrC and TaC is proposed.
|
Published: 25 January 2025
Online: 2025-01-21
|
|
|
|
1 Liu H, Tong K, Feng X, et al. Journal of Materials Science, 2023, 58(1), 157. 2 Zhang J, Mcmahon J M. Journal of Materials Science, 2021, 56(6), 4266. 3 Jaramillo-cabanzo D F, Ajayib P, Meduri P, et al. Journal of Physics D: Applied Physics, 2020, 54(8), 083001. 4 Yuan S, Zhang Q. Frontiers in Chemistry, 2021, 9, 812287. 5 Zeng Q, Deng N, Wang S S, et al. ChemElectroChem, 2022, 9(21), e202200946. 6 Sun Y, Cui H, Li G, et al. ACS Nano, 2011, 5(2), 932. 7 Du J, Cai M Z, Yan S J, et al. Powder Metallurgy Materials Science and Engineering, 2022, 27(3), 237 (in Chinese). 杜军, 蔡明柱, 严石静, 等. 粉末冶金材料科学与工程, 2022, 27(3), 237. 8 Bhattacharyya S, Harrison J F. Computational and Theoretical Chemistry, 2022, 1216, 113853. 9 Liu N, Tian C Y, Shu S M, et al. Journal of the Chinese Ceramic Society, 1998, 26(2), 80(in Chinese). 刘宁, 田春艳, 舒士明, 等. 硅酸盐学报, 1998, 26(2), 80. 10 Zhang Y W. Structural characterization and electrical properties of zirconium carbide. Master's Thesis, Wuhan University of Technology, China, 2012 (in Chinese). 张育伟. 碳化锆的结构表征与电性能硏究. 硕士学位论文, 武汉理工大学, 2012. 11 Wu S Q, Zhu X K, Luo Y, et al. Journal of Materials Science and Engineering, 2004, 2(22), 272 (in Chinese). 吴胜琴 朱心昆, 罗毅, 等. 材料科学与工程学报, 2004, 2(22), 272. 12 Chrystie R S M. The Chemical Record, 2023, DOI:10.1002/tcr.202300087. 13 Zhang J, Wang C Y, Adhikari S. Journal of Physics D: Applied Physics, 2012, 45(28), 285301. 14 Haus J W, De ceglia D, Vincenti M A, et al. Journal of the Optical So-ciety of America B, 2014, 31(6), A13. 15 Ayatollahi M R, Shadlou S, Shokrieh M M, et al. Polymer Testing, 2011, 30(5), 548. 16 Shin J, Kang N, Kim B, et al. Chemical Society Reviews, 2023, 52, 4488. 17 Huo K F, Hu Y M, Ma Y W, et al. Nanotechnology, 2007, 18(14), 145615. 18 Shi L, Gu Y L, Chen L Y, et al. Chemistry Letters, 2004, 33(12), 1546. 19 Tian S, Li H J, Zhang Y L, et al. Journal of the American Ceramic Society, 2014, 97(1), 48. 20 Li F P, Xu Z L, Zhao K, et al. Materials Letters, 2018, 230, 249. 21 Tian S, Zhang Y L, Ren J C, et al. Applied Surface Science, 2017, 402, 344. 22 Chen D Y, Liu Y, Zheng Y, et al. Physical Review B, 2022, 106(23), 235427. 23 Li Y L, Luo W, Zeng Z. National Academy of Sciences of the United States of America,2013, 110(23), 9289. 24 Qiang X F. Research on CVD fabrication and properties of anti-oxidation SiCNW-SiC coating for carbon/carbon composites. Ph. D. Thesis, Northwestern Polytechnical University, China, 2014 (in Chinese). 强新发. C/C复合材料SiCNW-SiC抗氧化涂层 CVD法制备及性能研究. 博士学位论文, 西北工业大学, 2014. 25 Ryu Z Y, Zheng J T, Wang M Z, et al. Carbon, 2002, 40(5), 715. 26 Liang Z T. In situ growth of HfC nanowires and modification of C/C composites. Master's Thesis, Chongqing Jiaotong University, China, 2019 (in Chinese). 梁中天. HfC纳米线的原位生长及其改性C/C复合材料. 硕士学位论文, 重庆交通大学, 2019. 27 Lee D J, Song S H. International Journal of Materials Research, 2017,118, 693. 28 Ren J C, Duan Y T, Lv C F, et al. Ceramics International, 2021, 47(6), 7853. 29 Ren J C, Zhang Y L, Hu H, et al. Applied Surface Science, 2016, 360, 970. 30 Tian S, Li H J, Zhang Y L, et al. Journal of Alloys and Compounds, 2013, 580, 407. 31 Tian S, Li H J, Zhang Y L, et al. Journal of Crystal Growth, 2013, 384, 44. 32 Fei T. Study on modification of C/C composites by in-situ growth of HfC nanowires. Master's Thesis, Northwestern Polytechnical University, China, 2017 (in Chinese). 费甜. 原位生长HfC纳米线改性C/C复合材料研究. 硕士学位论文, 西北工业大学, 2017. 33 Fu Y Q. HfC nanowires and toughened C/C composites were prepared by precursor pyrolysis. Master's Thesis, Northwestern Polytechnical University, China, 2019 (in Chinese). 付艳芹. 先驱体裂解制备 HfC 纳米线及其增韧 C/C 复合材料. 硕士学位论文, 西北工业大学, 2019. 34 Feng E R. Preparation and ablation resistance of HfC/PyC core-shell structure nanowire-reinforced HfC-ZrC coating. Master's Thesis, Xi'an University of Architecture and Technology, China, 2022(in Chinese). 冯二荣. HfC/PyC核壳结构纳米线增韧HfC-ZrC涂层的制备和抗烧蚀性能研究. 硕士学位论文, 西安建筑科技大学, 2022. 35 Yan N N. Study on in-situ growth of ZrC nanowires/tubes modified C/C composite. Master's Thesis, Northwestern Polytechnical University, China, 2018 (in Chinese). 闫宁宁. 原位生长ZrC纳米线/管改性C/C复合材料研究. 硕士学位论文, 西北工业大学, 2018. 36 Yan N N, Shi X H, Li K, et al. Composites Part B:Engineering, 2018, 154, 200. 37 Wang H D. Study on the preparation of zirconium silicate whisker. Master's Thesis, Jingdezhen Ceramic Institute, China, 2014(in Chinese). 王洪达. 硅酸锆晶须制备的研究. 硕士学位论文, 景德镇陶瓷学院, 2014. 38 Cheng S, Cheng L F, Ye F, et al. Ceramics International, 2020, 46(17), 27463. 39 Zhang J, Zhao L, Li H Y, et al. Journal of Crystal Growth, 2021, 568, 126183. 40 Xu L, Huang C Z, Liu H L, et al. International Journal of Refractory Metals and Hard Materials, 2014, 42, 116. 41 Mu J R, Shi X H, Zheng H R, et al. Ceramics International, 2020, 47(3), 3063. 42 Cui X M, Nam Y S, Lee J Y, et al. Materials Letters, 2008, 62(12-13), 1961. 43 Sander M S, Cote M J, Gu W, et al. Advanced Materials, 2004, 16(22), 2052. 44 Zhang P Y. Study on preparation of one-dimensional mullite ceramics by molten salt method. Ph. D. Thesis, Tianjin University, China, 2010 (in Chinese). 张鹏宇. 熔盐法制备一维莫来石陶瓷材料的研究. 博士学位论文, 天津大学, 2010. 45 Du J, Yang Y C, Fan Z, et al. Journal of Alloys and Compounds, 2013, 560, 142. 46 Li N, Yan Y, Xia B Y, et al. Biosensors and Bioelectronics, 2014, 54, 521. 47 Yan Y, Zhang L, Qi X Y, et al. Small, 2012, 8(21), 3350. 48 Tao X Y, Zhou S X, Ma J, et al. Ceramics International, 2017, 43(4), 3910. 49 Wang K, Zhao K, Meng Q N, et al. Ceramics International, 2022, 48(17), 25474. 50 Johnsson M, Nygren M. Journal of Materials Research, 1997, 12(9), 2419. 51 Futamoto M, Yuito K, Awabe U. Journal of Crystal Growth, 1983, 61(1), 69. 52 Li K Z, Zhou X, Zhao Z G, et al. Journal of Solid State Chemistry, 2018, 258, 383. 53 Li J H, Zhang Y L, Fu Y Q, et al. Ceramics International,2018, 44(11), 13335. 54 Krishnarao R V, Subrahmanyam J, Ramakrishna V, et al. Journal of Materials Synthesis and Processing, 2001, 9(1), 1. 55 Johnsson M, Nygren M. Journal of Materials Research, 1997, 12(9), 2419. 56 Chen Y J, Li J B, Wei Q M, et al. Journal of Crystal Growth, 2000, 224(3-4), 279. 57 Qiu Z, Huang H, Du J, et al. Journal of Materials Chemistry A, 2014, 2(21), 8003. 58 Tao X Y, Du J, Yang Y C, et al. Crystal Growth & Design, 2011, 11(10), 4422. 59 Yyan X Y, Cheng L F, Kong L, et al. Journal of Alloys and Compounds, 2014, 596, 132. 60 Ren J C. Study on toughening of HfC based anti-ablative coatings by chemical vapor deposition HfC nanowires. Ph. D. Thesis, Northwestern Polytechnical University, China, 2018. 任金翠. 化学气相沉积HfC纳米线增韧HfC基抗烧蚀涂层研究. 博士学位论文, 西北工业大学, 2018. 61 Ren J C, Zhang Y L, Fu Y Q, et al. Ceramics International, 2019, 45(5), 5321. 62 Zhang Y L, Ren J C, Tian S, et al. Corrosion Science, 2015, 90, 554. 63 Zhang Y L, Ren J C, Tian S, et al. Applied Surface Science, 2014, 311, 208. 64 Zhao G L, Huang C Z, Liu H L, et al. International Journal of Refractory Metals & Hard Materials, 2012,19(8), 122. 65 Yuan J S, Zhang H, Tang J, et al. Applied Physics Letters, 2012, 100(11), 113111. 66 Yang Y C, Liu L, Wei Y, et al. Carbon, 2010, 48(2), 531. 67 Zhnag J, Yang C, Wang Y J, et al. Nanotechnology, 2006, 17(1), 257. 68 Yang Y C, Qian L, Tang J, et al. Applied Physics Letters, 2008, 92(15), 153105. 69 Tian S, Li H J, Zhang Y L, et al. CrystEngComm, 2014,221, 16(15), 3186. 70 Mavkie W, Matthews M R et al. Journal of Vacuum Science & Technology, B Microelectronics and Nanometer Structures: Processing, Measurement and Phenomena, 1998, 16(4), 2057. 71 Chiu T W, Tang J, Tang S, et al. Materials Today Communications, 2020, 25, 101240. 72 Yin X M, Li H J, Fu Y Q, et al. Chemical Engineering Journal, 2020, 392, 124820. 73 Qiu Z, Huang H, Du J, et al. The Journal of Physical Chemistry C, 2013, 117(27), 13770.
|
|
|
|