CARBON NANO-MATERIALS |
|
|
|
|
|
Performance Limiting Factors and Efficiency Improvement Methods of Graphene/n-Si Schottky Junction Solar Cell |
SHANG Yudong1,2, CHEN Xiuhua1,2, LI Shaoyuan3, MA Wenhui3, WANG Yuechun1,2, XIANG Fuwei1,2
|
1 Faculty of Materials Science and Engineering, Yunnan University, Kunming 650091; 2 Faculty of Physics and Astronomy, Yunnan University, Kunming 650091; 3 National Engineering Laboratory for Vacuum Metallurgy, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093; |
|
|
Abstract Graphene is a new type zero band gap and semi-metal material. Due to its high transmittance, good electrical conductivity, high stability, mechanical properties and other excellent performance, it could replace the traditional ITO material to prepare the new generation of graphene/n-Si Schottky junction solar cells. In this review the research progress of graphene/n-Si Schottky junction solar cells are described in detail, the reasons for affecting the performance of graphene/n-Si Schottky junction solar cells and the related optimization methods are mainly summarized and analyzed, in order to provide references for the further research and application of graphene/n-Si Schottky junction solar cells in the future.
|
Published: 10 February 2017
Online: 2018-05-02
|
|
|
|
1 Lewis N S. Toward cost-effective solar energy use[J]. Science,2007,315(5813):798. 2 Michael Grätzel. Photoelectrochemical cells[J]. Nature,2001,414:338. 3 Fang X S, Wu L M, Hu L F. ZnS nanostructure arrays: A developing material star[J]. Adv Mater,2011,23(5):585. 4 Hovel H J. Semiconductors and semimetals: Solar cells[M]. New York: Academic Press,1975. 5 Johnston K W, Pattantyus-Abraham A G, Clifford J P, et al. Schottky-quantum dot photovoltaics for efficient infrared power conversion[J]. Appl Phys Lett,2008,92(15):151115. 6 Liu C Y, Kortshagen U R. A silicon nanocrystal Schottky junction solar cell produced from colloidal silicon nanocrystals[J]. Nanoscale Res Lett,2010,5:1253. 7 Tang J, Wang X H, Brzozowski L, et al. Schottky quantum dot solar cells stable in air under solar illumination[J]. Adv Mater,2010,22(12):1398. 8 Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666. 9 Mayorov A S, Gorbachev R V, Morozov S V, et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature[J]. Nano Lett,2011,11(6):2396. 10 Ni G X, Zheng Y, Bae S, et al. Graphene-ferroelectric hybrid structure for flexible transparent electrodes[J]. ACS Nano,2012,6(5):3935. 11 Blake P, Hill E W, Neto A H C, et al. Making graphene visible[J]. Appl Phys Lett,2007,91(6):063124. 12 Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science,2008,320(5881):1308. 13 Neto A H C, Guinea F, Peres N M R, et al. The electronic properties of graphene[J]. Rev Mod Phys,2009,81(1):109. 14 Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature,2009,457:706. 15 Xu D, Yu X, Zuo L, et al. Interface engineering and efficiency improvement of monolayer grapheneesilicon solar cells by inserting an ultra-thin LiF interlayer[J]. RSC Adv,2015,5:46480. 16 Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics[J]. Nat Photonics,2010,4:611. 17 Weiss N O, Zhou H, Liao L, et al. Graphene: An emerging electronic material[J]. Adv Mater,2012,24(43):5782. 18 Bonaccorso F, Colombo L, Yu G, et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science,2015,347(6217):1246501. 19 Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science,2009,324(5932):1312. 20 Reina A, Jia X, Ho J, et al. Few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Lett,2009,9(1):30. 21 Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nat Nanotechnol,2010,5:574. 22 Li X M, Zhu H W, Wang K L, et al. Graphene-on-silicon Schottky junction solar cells[J]. Adv Mater,2010,22(25):2743. 23 Lin Y X, Li X M, Xie D, et al. Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function[J]. Energy Environ Sci,2013,6:108. 24 Lin Y X, Xie D, Chen Y, et al. Optimization of graphene/silicon heterojunction solar cells[C]// Conference Record of the IEEE Photovoltaic Specialists Conference. New York,2012:2566. 25 Li Y F, Yang W, Tu Z Q, et al. Schottky junction solar cells based on graphene with different numbers of layers[J]. Appl Phys Lett,2014,104:043903. 26 Wu Y M, Zhang X Z, Jie J S, et al. Graphene transparent conductive electrodes for highly efficient silicon nanostructures-based hybrid heterojunction solar cells[J]. J Phys Chem C,2013,117:11968. 27 Geng H, Kim K K, Song C, et al. Doping and de-doping of carbon nanotube transparent conducting films by dispersant and chemical treatment[J]. J Mater Chem,2008,18:1261. 28 Li X M, Xie D, Park H, et al. Ion doping of graphene for high-efficiency heterojunction solar cells[J]. Nanoscale,2013,5:1945. 29 Li X M, Xie D, Park H, et al. Anomalous behaviors of graphene transparent conductors in graphene-silicon heterojunction solar cells[J]. Adv Energy Mater,2013,3(8):1029. 30 Cui T X, Lv R T, Huang Z H, et al. Enhanced efficiency of graphene/silicon heterojunction solar cells by molecular doping[J]. J Mater Chem A,2013,1:5736. 31 Green M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables (version 44) [J]. Prog Photovolt Res Appl,2014,22:701. 32 Ho P H, Liou Y T, Chuang C H, et al. Self-crack-filled graphene films by metallic nanoparticles for high-performance graphene he-terojunction solar cells[J]. Adv Mater,2015,27(10):1724. 33 Shi Y M, Kim K K, Reina A, et al. Work function engineering of graphene electrode via chemical doping[J]. ACS Nano,2010,4(5):2689. 34 Liu X, Zhang X W, Meng J Y, et al. High efficiency Schottky junction solar cells by co-doping of graphene with gold nanoparticles and nitric acid[J]. Appl Phys Lett,2015,106:233901. 35 Liu X, Zhang X W, Yin Z G, et al. Enhanced efficiency of graphene-silicon Schottky junction solar cells by doping with Au nanoparticles[J]. Appl Phys Lett,2014,105:183901. 36 Miao X C, Tongay S, Petterson M K, et al. High efficiency graphene solar cells by chemical doping[J]. Nano Lett,2012,12(6):2745. 37 Ayhan M E, Kalita G, Kondo M, et al. Photoresponsivity of silver nanoparticles decorated graphene-silicon Schottky junction[J]. RSC Adv,2014,4:26866. 38 Li X, Fan L L, Li Z, et al. Boron doping of graphene for graphene-silicon p-n junction solar cells[J]. Adv Energy Mater,2012,2(4):425. 39 Feng T T, Xie D, Lin Y X, et al. Efficiency enhancement of graphene/silicon-pillar-array solar cells by HNO3 and PEDOT-PSS[J]. Nanoscale,2012,4:2130. 40 Fan G F, Zhu H W, Wang K L, et al. Graphene/silicon nanowire Schottky junction for enhanced light harvesting[J]. ACS Appl Mater Interfaces,2011,3(3):721. 41 Xie C, Lv P, Nie B, et al. Monolayer graphene film/silicon nanowire array Schottky junction solar cella[J]. Appl Phys Lett,2011,99:133113. 42 Kelzenberg M D, Turner-Evans D B, Kayes B M, et al. Photovoltaic measurements in single-nanowire silicon solar cells[J]. Nano Lett,2008,8(2):710. 43 Zhang X Z, Xie C, Jie J S, et al. High-efficiency graphene/Si na-noarray Schottky junction solar cells via surface modification and graphene doping[J]. J Mater Chem A,2013,1:6593. 44 Xie C, Zhang X J, Ruan K Q, et al. High-efficiency, air stable graphene/Si micro-hole array Schottky junction solar cells[J]. J Mater Chem A,2013,1:15348. 45 Feng T T, Xie D, Lin Y X, et al. Graphene based Schottky junction solar cells on patterned silicon-pillar-array substrate[J]. Appl Phys Lett,2011,99:233503. 46 Peng L Q,Xu Y,Wu Y,et al.Aligned single-crystalline Si nanowire arrays for photovoltaic applications[J]. Small,2005,1(11):1062. 47 Stelzner T, Pietsch M, Andrä1 G, et al. Silicon nanowire-based solar cells[J]. Nanotechnol,2008,19:295203. 48 Sivakov V, Andrä G, Gawlik A, et al. Silicon nanowire-based solar cells on glass: Synthesis, optical properties, and cell parameters[J]. Nano Lett,2009,9(4):1549. 49 Kayes B M, Zhang L, Twist R, et al. Flexible thin-film tandem solar cells with >30% efficiency[J]. IEEE J Photovoltaics,2014,4(2):729. 50 Garnett E C, Yang P D. Silicon nanowire radial p-n junction solar cells[J]. Am Chem Soc,2008,130(29):9224. 51 Gunawan O, Guha S. Characteristics of vapor-liquid-solid grown silicon nanowire solar cells[J]. Energy Mater Solar Cells,2009,93(8):1388. 52 Tian B, Zheng X L, Kempa T J, et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources[J]. Nature,2007,449:885. 53 Tsakalakos L, Balch J, Fronheiser J, et al. Silicon nanowire solar cells[J]. Appl Phys Lett,2007,91:233117. 54 Garnett E, Yang P D. Light trapping in silicon nanowire solar cells[J]. Nano Lett,2010,10(3):1082. 55 Muskens O L, Rivas J G. Algra R E, et al. Design of light scatte-ring in nanowire materials for photovoltaic applications[J]. Nano Lett,2008,8(9):2638. 56 Xie C, Zhang X Z, Wu Y M, et al. Surface passivation and band engineering: A way toward high efficiency graphene-planar Si solar cells[J]. J Mater Chem A,2013,1:8567. 57 Jiao K J, Wang X L, Wang Y, et al. Graphene oxide as an effective interfacial layer for enhanced graphene/silicon solar cell performance[J]. J Mater Chem C,2014,2:7715. 58 Song Y, Li X M, Mackin C, et al. Role of interfacial oxide in high-efficiency graphene-silicon Schottky barrier solar cells[J]. Nano Lett,2015,15(3):2104. 59 Li R, Di J T, Yong Z H, et al. Polymethylmethacrylate coating on aligned carbon nanotube-silicon solar cells for performance improvement[J]. J Mater Chem A,2014,2:4140. 60 Li X K, Jung Y, Huang J, et al. Device area scale-up and improvement of SWNT/Si solar cells using silver nanowires[J]. Adv Energy Mater,2014,4(12):1400186. 61 Shi E Z, Zhang L H, Li Z, et al. TiO2-coated carbon nanotube-silicon solar cells with efficiency of 15%[J]. Sci Rep,2012,2:884. 62 Wang F J, Kozawa D, Miyauchi Y, et al. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers[J]. Nat Commun,2015,6:6305. 63 Yu H A, Kaneko T, Yoshimura S, et al. The junction characteristics of carbonaceous film/n-type silicon (C/n-Si) layer photovoltaic cell[J]. Appl Phys Lett,1996,69:3042. 64 Shi E Z, Li H B, Yang L, et al. Colloidal antireflection coating improves graphene-silicon solar cells[J]. Nano Lett,2013,13(4):1776. 65 Yavuz S, Kuru C, Choi D, et al. Graphene oxide as a p-dopant and an anti-reflection coating layer, in graphene/silicon solar cells[J]. Nanoscale,2016,8:6473. 66 Lancellotti L, Bobeico E, Capasso A, et al. Combined effect of double antireflection coating and reversible molecular doping on performance of few-layer graphene/n-silicon Schottky barrier solar cells[J]. Solar Energy,2016,127:198. |
|
|
|