REVIEW PAPER |
|
|
|
|
|
Research Progress on Al-Ti-Mg Complex Deoxidized Steels |
LIU Linli, HOU Yanhui, LIU Yang, LI Bosi, MIN Liang, QIAN Baoshu
|
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081; |
|
|
Abstract Deoxidation in steel smelting process is the key process to determine the quality of steel. In the research of the deoxidation products which can be used in the oxide metallurgy, Ti and Mg oxide inclusions formed by the compound deoxidation of the steel are more dispersed. In this paper, alloy manufacturing, inclusion formation mechanism, crystal structure, mechanical pro-perties and the effect of inclusions on the ferrite nucleation in Al-Ti-Mg composite deoxidized steel are summarized. The problems to be solved in Al-Ti-Mg composite deoxidized steel are put forward, and the direction for researchers to further explore and research field of metallurgy are provided.
|
Published: 10 August 2017
Online: 2018-05-04
|
|
|
|
1 Ogibayashi S. The features of oxides in Ti-deoxidized steel[C]// Proceedings of the Sixth International Iron and Steel Congress, ISIJ International. Nagoya, 1990:612. 2 Babu S S, David S A. Inclusion formation and microstructure evolution in low alloy steel welds[J]. ISIJ Int,2002, 42(12):1344. 3 Sha Q Y, Sun Z Q. Grain growth behavior of coarse-grained auste- nite in a Nb-V-Ti microalloyed steel[J]. Mater Sci Eng A,2009,523:77. 4 Furuhara T, Shinyoshi T, Miyamoto G, et al. Multiphase crystallography in the nucleation of intragranular ferrite on MnS+V(C, N) complex precipitate in austenite[J]. ISIJ Int,2003,43(12):2028. 5 Sarma D S, Karasev A V, Jonsson P G. On the role of non-metallic inclusions in the nucleation of acicular ferrite in steels[J]. Trans Iron Steel Inst Jpn,2009, 49(7):1063. 6 Ohta H, Suito H. Dispersion behavior of MgO, ZrO2, Al2O3, CaO-Al2O3 and MnO-SiO2 deoxidation particles during solidification of Fe-10wt%Ni alloy[J]. ISIJ Int,2006,46(1):22. 7 Hu C L, Song B, Xin W B, et al. Effect of Ti-Mg composite deoxidization on inclusions in low carbon steel and organization[J]. Trans Mater Heat Treat,2013,34(5):37(in Chinese). 胡春林, 宋波, 辛文彬,等. Ti-Mg复合脱氧对低碳钢中夹杂物及组织的影响[J]. 材料热处理学报,2013,34(5):37. 8 Song Y, Li G Q, Yang F. Effect of Al-Ti-Mg composite deoxidization on inclusions in steel and organization[J]. Chinese J Eng,2011,33(10):1214(in Chinese). 宋宇, 李光强, 杨飞. Al-Ti-Mg复合脱氧对钢中夹杂物及组织的影响[J]. 工程科学学报,2011, 33(10):1214. 9 Saxena S K. Refining reaction of magnesium in steel at steelmaking temperature[C]//Proceedings International Symposium on the Phy-sical Chemistry of Iron and Steel Making. Toronto, 1982: 17. 10 Wen B, Song B, Pan N, et al. Effect of SiMg alloy on inclusions and microstructures of 16Mn steel[J]. Ironmaking Steelmaking,2011,38(8):577. 11 Chang C H, Jung I H, Park S C, et al. Effect of Mg on the evolution of non-metallic inclusions in Mn-Si-Ti deoxidised steel during solidification: Experiments and thermodynamic calculations[J]. Ironmaking Steelmaking, 2005,32(3):251. 12 Ono H, Nakajima K, Maruo R, et al. Formation conditions of Mg2TiO4 and MgAl2O4 in Ti-Mg-Al complex deoxidation of molten iron[J]. ISIJ Int,2009, 49(7):957. 13 Ono H, Ibuta T. Equilibrium relationships between oxide compounds in MgO-Ti2O3-Al2O3 with iron at 1873 K and variations in stable oxides with temperature[J]. ISIJ Int,2011,51(12):2012. 14 Ono H, Nakajima K, Ibuta T, et al. Equilibrium relationship between the oxide compounds in MgO-Al2O3-Ti2O3 and molten iron at 1873 K[J]. ISIJ Int,2010,50(12):1955. 15 Ono H, Nakajima K, Agawa S, et al. Formation conditions of Ti2O3, MgTi2O4, Mg2TiO4, and MgAl2O4 in Ti-Mg-Al complex deoxidation of molten iron[J]. Steel Res Int,2009,86(3):24. 16 Tae-Kyu L, Kim H J, et al. Effect of inclusion size on the nucleation of acicular ferrite in welds[J]. ISIJ Int,2000,40(12):1260. 17 Han S K, Chang C H, Lee H G. Evolution of inclusions and resul-tant microstructural change with Mg addition in Mn/Si/Ti deoxidized steels[J]. Scripta Mater,2005,53(11):1253. 18 Chai F, Yang C F, Su H, et al. Effect of magnesium on inclusions formation in Ti-killed steels and microstructural evolution in welding induced coarse grianed heat affected zone[J]. J Iron Steel Res Int,2009,16(1):69. 19 Song M M, Song B, Hu C L, et al. Effect of Ti-Mg composite solid on the microstructure and impact properties of heat affected zone of steel[J]. J Eng Sci, 2015,37(7):883(in Chinese). 宋明明, 宋波, 胡春林,等. Ti-Mg复合脱氧对钢热影响区组织和冲击性能的影响[J]. 工程科学学报,2015, 37(7):883. 20 Zheng W. Al-Ti-Mg(Ca) composite solid against the large deformation of pipeline steel inclusion, the influence of the organization and performance of the steel research [D].Wuhan: Wuhan University of Science and Technology,2014(in Chinese). 郑万. Al-Ti-Mg(Ca)复合脱氧对抗大变形管线钢中的夹杂物、钢的组织及性能的影响研究[D]. 武汉:武汉科技大学,2014. 21 Hou Y H, Zheng W, Wu Z H, et al. Study of Mn absorption by complex oxide inclusions in Al-Ti-Mg killed steels[J]. Acta Mater,2016,118:8. 22 Wang C, Nuhfer N T, Sridhar S. Transient behavior of inclusion chemistry, shape, and structure in Fe-Al-Ti-O melts: Effect of titanium/aluminum ratio[J]. Metall Mater Trans B,2009,40(6):1022. 23 Ohta H, Suito H. Characteristics of particle size distribution of deoxidation products with Mg, Zr, Al, Ca, Si/Mn and Mg/Al in Fe-10mass%Ni alloy[J]. ISIJ Int,2006,46(1):14. 24 Suito H, Ohta H. Characteristics of particle size distribution in early stage of deoxidation[J]. ISIJ Int,2006,46(1):33. 25 Byun J S, Shim J H, Cho Y W, et al. Non-metallic inclusion and intragranular nucleation of ferrite in Ti-killed C-Mn steel[J]. Acta Mater,2003,51(6):1593. 26 Hu C L, Song B, Song G Y, et al. Effect of content of Mg on Ti-Mg composite solid inclusions in steel and organization [J]. Trans Nonferrous Met Soc China, 2013(11):3211(in Chinese). 胡春林, 宋波, 宋高阳,等. Mg含量对Ti-Mg复合脱氧钢中夹杂物与组织的影响[J]. 中国有色金属学报, 2013(11):3211. 27 Mabuchi H, Uemori R, Fujioka M. The role of Mn depletion in intragranular ferrite transformation in the heat affected zone of welded joints with large heat input in structural steels[J]. ISIJ Int,1996,36(11):1406. 28 Yang F. Fe-M-Ti-Mg (M = Si, Mn, Al) alloy composite solid steel inclusion research[D]. Wuhan:Wuhan University of Science and Technology,2011 (in Chinese). 杨飞. Fe-M-Ti-Mg(M=Si,Mn,Al )合金复合脱氧钢夹杂物的研究[D]. 武汉:武汉科技大学,2011. 29 Hatano H, Nakagawa T, Sugino T, et al. Effect of Ti and B on microstruc ture of 780 MPa class high strength steel weld metal(transformations and microstructures)[J]. R D Res Develop Kobe Steel Eng Rep,2005,91(4):397. 30 Xu L Y. Magnesium deoxidizing inclusion in steel properties and large welding line energy performance study[D]. Changsha: Central South University,2014(in Chinese). 徐龙云. 镁脱氧钢中夹杂物特性及大线能量焊接性能研究[D]. 长沙:中南大学, 2014. 31 Karasev A V, Suito H. Characteristics of fine oxide particles produced by Ti/M (M=Mg and Zr) complex deoxidation in Fe-10mass%Ni alloy[J]. ISIJ Int,2008, 48(11):1507. 32 Mimura T. Control of inclusions in tire cord steel and valve spring steel[C]//Technology for Control of Nonmetallic Inclusions and Production of Clean Steels: The 182 and 183th Nishiyama Memorial Seminar, ISIJ. Tokyo,2005:127. 33 Gregg J M, Bhadeshia H K D H. Solid-state nucleation of acicular ferrite on minerals added to molten steel[J]. Acta Mater,1997,45(2):739. 34 Shim J H, Cho Y W, Chung S H, et al. Nucleation of intragranular ferrite at Ti2O3, particle in low carbon steel[J]. Acta Mater,1999,47(9):2751. 35 Stephen A C. Weld metal microstructure in carbon manganese deposits[C]//The International Conference on Quality and Reliability in Welding. Hangzhou,1984. 36 Cui Z M, Zhu L G, Zhang Q J. Numerical simulation and research trend of oxides metallurgy[J]. Mater Rev:Rev,2015,29(4):83(in Chinese). 崔志敏, 朱立光, 张庆军. 氧化物冶金中的数值模拟及研究趋势[J]. 材料导报:综述篇,2015,29(4):83. 37 Madariaga I, Gutiérrez I. Role of the particle-matrix interface on the nucleation of acicular ferrite in a medium carbon microalloyed steel[J]. Acta Mater, 1999,47(3):951. 38 Ricks R A, Howell P R, Barritte G S. The nature of acicular ferrite in HSLA steel weld metals[J]. J Mater Sci,1982,17(3):732. |
|
|
|