REVIEW PAPER |
|
|
|
|
|
Progress of Study on Phase Decomposition of Duplex Stainless Steel |
YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong
|
College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094; |
|
|
Abstract Duplex stainless steel has been used widely in industrial fields, such as nuclear power plant, for its excellent mechanical property, corrosion resistance and resistance to irradiation damage at high temperature. The ferritic phase decomposes into iron-rich phase and chromium-rich phase in the range of 300—550 ℃, which results in the “475 ℃ embrittlement” and the poor mechanical properties, affecting the service life and safety of duplex stainless steel. However, the decomposition mechanism of the alloy with the composition variation, and the boundary of miscible gap are still unclear, which affects the decomposition kinetics and microstructure of the alloy. The paper reviews the results of experiments and phase-field simulations on the phase decomposition of Fe-Cr alloys, discusses the unresolved issues and development direction in this field, attempting to provide a reference for related studies.
|
Published: 10 August 2017
Online: 2018-05-04
|
|
|
|
1 Gao Wa, Luo Jianmin, Yang Jianjun. Research progress and application of double phase stainless steel[J]. Ordnance Mater Sci Eng,2005,28(3):61(in Chinese). 高娃, 罗建民, 杨建君. 双相不锈钢的研究进展及其应用[J]. 兵器材料科学与工程,2005,28(3):61. 2 Klueh R L. Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors[J]. Int Mater Rev,2005, 50(5):287. 3 Klueh R L, Nelson A T. Ferritic/martensitic steels for next-generation reactors[J]. J Nucl Mater,2007,371(1):37. 4 Sahu J K, Krupp U, Ghosh R N, et al. Effect of 475℃ embrittlement on the mechanical properties of duplex stainless steel[J]. Mater Sci Eng A,2009,508(1):1. 5 Bachhav M, Odette G R, Marquis E A. α′ precipitation in neutron-irradiated Fe-Cr alloys[J]. Scripta Mater,2014,74:48. 6 Pareige C, Kuksenko V, Pareige P. Behaviour of P, Si, Ni impurities and Cr in self ion irradiated Fe-Cr alloys—Comparison to neutron irradiation[J]. J Nucl Mater,2015,456:471. 7 Senninger O, Martínez E, Soisson F, et al. Atomistic simulations of the decomposition kinetics in Fe-Cr alloys: Influence of magnetism[J]. Acta Mater,2014,73:97. 8 Chen W Y, Miao Y, Gan J, et al. Neutron irradiation effects in Fe and Fe-Cr at 300 ℃[J]. Acta Mater,2016,111:407. 9 Korchuganova O A, Thuvander M, Aleev A A, et al. Microstructural evolution of Fe 22% Cr model alloy under thermal ageing and ion irradiation conditions studied by atom probe tomography[J]. J Nucl Mater,2016,477:172. 10 Bley F. Neutron small-angle scattering study of unmixing in Fe-Cr alloys[J]. Acta Metall Mater,1992,40(7):1505. 11 Cies′lak J, Dubiel S M. Nucleation and growth versus spinodal decomposition in Fe-Cr alloys: Mössbauer-effect modelling[J]. J Alloy Compd ,1998,269(1):208. 12 Lopez-Hirata V M, Cayetano-Castro N, Dorantes-Rosales H J, et al. Phase separation in aged diffusion-couples Fe/Fe-40at% Cr alloy[J]. Mater Trans,2011,52(12):2155. 13 Marquis E A, Bachhav M, Chen Y, et al. On the current role of atom probe tomography in materials characterization and materials science[J]. Curr Opin Solid St M,2013,17(5):217. 14 Mirzoev A A, Yalalov M M, Mirzaev D A. Calculation of the energy of mixing for the Fe-Cr alloys by the first-principles methods of computer simulation[J]. Phys Met Metall,2004, 97(4):336. 15 Pareige C, Roussel M, Novy S, et al. Kinetic study of phase transformation in a highly concentrated Fe-Cr alloy: Monte Carlo simulation versus experiments[J]. Acta Mater,2011,59(6): 2404. 16 Dopico I, Castrillo P, Martin-Bragado I. Quasi-atomistic modeling of the microstructure evolution in binary alloys and its application to the FeCr case[J]. Acta Mater,2015,95:324. 17 Hedström P, Baghsheikhi S, Liu P, et al. A phase-field and electron microscopy study of phase separation in Fe-Cr alloys[J]. Mater Sci Eng A,2012,534(1):552. 18 Xue F, Wang Z X, Zhang G D, et al. Numerical simulations of the phase separation properties for the thermal aged CDSS with phase field model[J]. Nucl Eng Des,2011,241(7):2378. 19 Fisher R M, Dulis E J, Carroll K C. Identification of the precipitate accompanying 885 °F embrittlement in chromium steels[J]. Trans AIME,1953,197(5):690. 20 Williams R O. Further studies of the iron-chromium system[J]. Trans Met Soc Aime,1958,212(12):497. 21 Bonny G, Terentyev D, Malerba L. On the α-α′ miscibility gap of Fe-Cr alloys[J]. Scripta Mater,2008,59(11):1193. 22 Cahn J W. On spinodal decomposition[J]. Acta Metall.1961,9: 795. 23 Chandra D, Schwartz L H. Mössbauer effect study of the 475℃ decomposition of Fe-Cr[J]. Metall Trans,1971,2(2):511. 24 Andersson J O, Sundman B. Thermodynamic properties of the Cr-Fe system[J]. Calphad,1987,11(1):83. 25 Binder K. Nucleation barriers, spinodals, and the Ginzburg criterion[J]. Phys Rev A,1984,29(1):341. 26 Xiong W, Selleby M, Chen Q, et al. Phase equilibria and thermodynamic properties in the Fe-Cr system[J]. Crtic Rev Solid State,2010,35(2):125. 27 Kuwano H. Mössbauer effect study on the mechanism of the phase decomposition in iron-chromium alloys[J]. Trans Jpn Inst Met,1985,26(7):482. 28 Lopez-Hirata V M, Soriano-Vargas O, Rosales-Dorantes H J, et al. Phase decomposition in an Fe-40 at.% Cr alloy after isothermal aging and its effect on hardening[J]. Mater Charact,2011,62(8): 789. 29 Westraadt J E, Olivier E J, Neethling J H. A high-resolution analy-tical scanning transmission electron microscopy study of the early stages of spinodal decomposition in binary Fe-Cr[J]. Mater Charact,2015,109:216. 30 Novy S, Pareige P, Pareige C. Atomic scale analysis and phase separation understanding in a thermally aged Fe-20at.%Cr alloy[J]. J Nucl Mater,2009,384(2):96. 31 Mohapatra J N, Kamada Y, Kikuchi H. Effect of Cr-rich phase precipitation on magnetic and mechanical properties of Fe-20% Cr alloy[J]. IEEE Trans Magn,2011,47(10):4356. 32 Xin X U, Odqvist J, Colliander M H, et al. Structural characterization of phase separation in Fe-Cr: A current comparison of experimental methods[J]. Metall Mater Trans A, 2016,47(12):1. 33 Chen L Q, Yang W. Computer simulation of the domain dynamics of a quenched system with a large number of non-conserved order parameters: The grain-growth kinetics[J]. Phys Rev B,1994,50(21):15752. 34 Chen L Q, Shen J. Applications of semi-implicit Fourier-spectral method to phase field equations[J]. Comput Phys Commun, 1998,108(2):147. 35 Honjo M, Saito Y. Numerical simulation of phase separation in Fe-Cr binary and Fe-Cr-Mo ternary alloys with use of the Cahn-Hilliard equation[J]. ISIJ Int,2000,40(9):914. 36 Soriano-Vargas O, Avila-Davila E O, Lopez-Hirata V M, et al. Effect of spinodal decomposition on the mechanical behavior of Fe-Cr alloys[J]. Mater Sci Eng A,2010,527(12):2910. 37 Li S X, Zhang H, Li S, et al. Effects of thermal aging temperature and Cr content on phase separation kinetics in Fe-Cr alloys simulated by the phase field method[J]. Int J Min Mater,2013, 20(11):1067. 38 Li S X, Lv X M, et al. Phase field simulation of phase decomposition after thermal aging[J]. Bull Chin Ceram Soc, 2013,32(5):965. 39 Lecoq N, Lacaze J, Danoix F, et al. Phase-field modelling of spino-dal decomposition during ageing and heating[J]. Solid State Pheno-mena,2011,172:1072. 40 Xiong W, Grönhagen K A, Ågren John, et al. Investigation of spinodal decomposition in Fe-Cr alloys: CALPHAD modeling and phase field simulation[J]. Solid State Phenomena,2011, 172-174:1060. 41 Liu W, Li Y S, Wu X C, et al. Phase-field simulation of the separation kinetics of a nanoscale phase in a Fe-Cr alloy[J]. J Mater Eng Perform,2016,25(5):1924. 42 Terentyev D A, Bonny G, Malerba L. Strengthening due to coherent Cr precipitates in Fe-Cr alloys: Atomistic simulations and theoretical models[J]. Acta Mater,2008,56(13):3229. 43 Li Y S, Li S X, Zhang T Y. Effect of dislocations on spinodal decomposition in Fe-Cr alloys[J]. J Nucl Mater,2009,395:120. 44 Biner S B, Tonks M R, Millett P C, et al. Progress on generic phase field method development[R]. PNNL Technical Report, PNNL-21811, Richland, Washington,2012. 45 Li Y S, Zhu H, Zhang L, et al. Phase decomposition and morphology characteristic in thermal aging Fe-Cr alloys under applied strain: A phase-field simulation[J]. J Nucl Mater,2012, 429(1):13. 46 Xiong W, Ågren J, et al. An effective method to estimate composition amplitude of spinodal decomposition for atom probe tomography validated by phase field simulations[J]. arXiv:1205.4195,2012. 47 Odqvist J, Zhou J, Xiong W, et al. 3D analysis of phase separation in ferritic stainless steels[C]//1st International Conference on 3D Materials Science 2012. Pittsburg, US,2013:221. 48 Xiong W, Hedström P, Selleby M. An improved thermodynamic modeling of the Fe-Cr system down to zero Kelvin coupled with key experiments[J]. Calphad,2011,35(3):355. 49 Miller M K, Stoller R E, Russell K F. Effect of neutron-irradiation on the spinodal decomposition of Fe-32% Cr model alloy[J]. J Nucl Mater,1996,230(3):219. 50 Dubey S, El-Azab A. Irradiation-induced composition patterns in binary solid solutions[J]. J Appl Phys,2013,114(12):124901. 51 Li Y L, Hu S Y, Sun X, et al. Phase-field model for interstitial loop growth kinetics and thermodynamic and kinetic models of irradiated Fe-Cr alloys[R]. PNNL Technical Report, PNNL-20467, Richland, Washington,2011. |
|
|
|