REVIEW PAPER |
|
|
|
|
|
The State of Art of Electrode Interface of Ionic Polymer-Metal Composites (IPMC) |
WANG Yanjie1, RU Jie2, ZHAO Dongxu2, WANG Tianmiao3, SHEN Qi3,4, CHEN Hualing2, ZHU Denglin1
|
1 School of Mechatronic Engineering, Hohai University, Changzhou 213022; 2 School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049; 3 Institute of Robotics, Beijing University of Aeronautics and Astronautics, Beijing 100191; 4 Department of Mechanical Engineering, University of Nevada, Las Vegas, Las Vegas 89154-4027; |
|
|
Abstract As a type of emerging smart materials, ionic polymer-metal composites (IPMC) consisting of polymer matrix and metal electrodes have a good electromechanical conversion capability. It can be made into a variety of actuators and sensors easily, which show great potentials in various fields. Mechanical and electrical properties of IPMC are affected by many factors, among which the electrode interface is one of the important factors. This paper reviews domestic and foreign research works on the electrode interface characteristics of IPMC in recent years, summarizes the main methods to optimize the electrode interface and proposes an effective design ideas to improve the preparation process of electrode interface of IPMC.
|
Published: 10 August 2017
Online: 2018-05-04
|
|
|
|
1 Zhang Q M, Li H, Poh M, et al. An all-organic composite actuator material with a high dielectric constant[J]. Nature,2002,419(6904):284. 2 Stuart M A C, Huck W T S, Genzer J, et al. Emerging applications of stimuli-responsive polymer materials[J]. Nat Mater,2010,9(2):101. 3 Shen Q, Trabia S, Stalbaum T, et al. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation[J]. Sci Rep,2016,6:24462 4 Baughman R H. Muscles made from metal[J]. Science,2003,300(5617):268. 5 Keplinger C, Sun J Y, Foo C C, et al. Stretchable, transparent, ionic conductors[J]. Science,2013,341(6149):984. 6 Ma M, Guo L, Anderson D G, et al. Bio-inspired polymer composite actuator and generator driven by water gradients[J]. Science,2013,339(6116):186. 7 Samatham R, Kim K J, Dogruer D, et al. Active polymers: An overview[M]//Electroactive Polymers for Robotic Applications. London:Springer,2007:1. 8 Bhandari B, Lee G Y, Ahn S H. A review on IPMC material as actuators and sensors: Fabrications, characteristics and applications[J]. Int J Precis Eng Manuf, 2012,13(1):141. 9 Shen Q, Wang T, Liang J, et al. Hydrodynamic performance of a biomimetic robotic swimmer actuated by ionic polymer-metal composite[J]. Smart Mater Struct,2013,22(7):075035. 10 Jo C, Pugal D, Oh I K, et al. Recent advances in ionic polymer-me-tal composite actuators and their modeling and applications[J]. Prog Polym Sci,2013,38(7):1037. 11 Bar-Cohen Y, Leary S P, Yavrouian A, et al. Challenges to the application of IPMC as actuators of planetary mechanisms[C]//SPIE′s 7th Annual International Symposium on Smart Structures and Materials. International Society for Optics and Photonics,2000:140. 12 Carpi F, De Rossi D. Electroactive polymer-based devices for e-textiles in biomedicine[J]. IEEE Trans Inform Technol Biomed,2005, 9(3):295. 13 Tiwari R, Garcia E. The state of understanding of ionic polymer metal composite architecture: A review[J]. Smart Mater Struct,2011,20(8):083001. 14 Yu M, He Q S, Ding Y, et al. Force optimization of ionic polymer metal composite actuators by an orthogonal array method[J]. Chin Sci Bull,2011,56(19):2061. 15 Shoji E, Hirayama D. Effects of humidity on the performance of io-nic polymer-metal composite actuators: Experimental study of the back-relaxation of actuators[J]. J Phys Chem B,2007,111(41):11915. 16 Palmre V, Pugal D, Kim K J, et al. Nanothorn electrodes for ionic polymer-metal composite artificial muscles[J]. Sci Rep,2014,4:6176. 17 Liu S, Montazami R, Liu Y, et al. Influence of the conductor network composites on the electromechanical performance of ionic polymer conductor network composite actuators[J]. Sens Actuators A: Phys,2010,157(2):267. 18 Nemat-Nasser S, Wu Y. Comparative experimental study of ionic polymer-metal composites with different backbone ionomers and in various cation forms[J]. J Appl Phys,2003,93(9):5255. 19 Bennett M D, Leo D J. Ionic liquids as stable solvents for ionic polymer transducers[J]. Sens Actuators A: Phys,2004,115(1):79. 20 Wu G, Hu Y, Liu Y, et al. Graphitic carbon nitride nanosheet electrode-based high-performance ionic actuator[J]. Nat Commun,2015,6(3):7. 21 Kong L, Chen W. Carbon nanotube and graphene-based bioinspired electrochemical actuators[J]. Adv Mater,2014,26(7):1025. 22 Wang Y, Chen H, et al. Aided manufacturing techniques and applications in optics and manipulation for ionic polymer-metal composites as soft sensors and actuators[J]. J Polym Eng,2015,35(7):611. 23 Salehpoor K, Shahinpoor M, Razani A. Role of ion transport in actuation of ionic polymeric-platinum composite (IPMC) artificial muscles[C]//5th Annual International Symposium on Smart Structures and Materials. San Diego,1998:50. 24 Asaka K, Oguro K, Nishimura Y, et al. Bending of polyelectrolyte membrane-platinum composites by electric stimuli I. Response cha-racteristics to various waveforms[J]. Polym J,1995,27(4):436. 25 He Q, Yu M, Zhang X, et al. Electromechanical performance of an ionic polymer-metal composite actuator with hierarchical surface texture[J]. Smart Mater Struct,2013,22(5):055001. 26 Kim S J, Lee I T, Kim Y H. Performance enhancement of IPMC actuator by plasma surface treatment[J]. Smart Mater Struct,2007,16(1):N6. 27 Noh T G, Tak Y, Nam J D, et al. Electrochemical characterization of polymer actuator with large interfacial area[J]. Electrochim Acta,2002,47(13):2341. 28 Jin N, Wang B F, Bian K, et al. Effect of surface roughening on the manufacture and performance of IPMC [J]. J Funct Mater,2008,39(11):1933. 金宁, 王帮峰, 卞侃,等. 表面粗化工艺对 IPMC 的制备及性能的影响[J]. 功能材料,2008,39(11):1933. 29 Kim K J, Shahinpoor M. Ionic polymer-metal composites: Ⅱ. Ma-nufacturing techniques[J]. Smart Mater Struct,2003,12(1):65. 30 Fujiwara N, Asaka K, Nishimura Y, et al. Preparation of gold-solid polymer electrolyte composites as electric stimuli-responsive mate-rials[J]. Chem Mater, 2000,12(6):1750. 31 Chang L, Chen H, Zhu Z, et al. Manufacturing process and electrode properties of palladium-electroded ionic polymer-metal compo-site[J]. Smart Mater Struct, 2012,21(6):065018. 32 Zhou W, Li W J. Micro ICPF actuators for aqueous sensing and manipulation[J]. Sens Actuators A: Phys,2004,114(2):406. 33 Kim K J, Shahinpoor M. A novel method of manufacturing three-dimensional ionic polymer-metal composites (IPMCs) biomimetic sensors, actuators and artificial muscles[J]. Polymer,2002,43(3):797. 34 Akle B J, Bennett M D, Leo D J, et al. Direct assembly process: A novel fabrication technique for large strain ionic polymer transducers[J]. J Mater Sci,2007, 42(16):7031. 35 Kim S J, Kim S M, Kim K J, et al. An electrode model for ionic polymer-metal composites[J]. Smart Mater Struct,2007,16(6):2286. 36 Wallmersperger T, Akle B J, Leo D J, et al. Electrochemical response in ionic polymer transducers: An experimental and theoretical study[J]. Compos Sci Technol,2008,68(5):1173. 37 Porfiri M. Influence of electrode surface roughness and steric effects on the nonlinear electromechanical behavior of ionic polymer metal composites[J]. Phys Rev E,2009,79(4):041503. 38 Palmre V, Pugal D, Leang K K, et al. The effects of electrode surface morphology on the actuation performance of IPMC[J]. Proc SPIE,2013,8687(36):86870W. 39 Chang L, Asaka K, Zhu Z, et al. Effects of surface roughening on the mass transport and mechanical properties of ionic polymer-metal composite[J]. J Appl Phys,2014,115(24):244901. 40 Tiwari R, Kim K J. Effect of metal diffusion on mechanoelectric property of ionic polymer-metal composite[J]. Appl Phys Lett,2010,97(24):244104. |
|
|
|