REVIEW PAPER |
|
|
|
|
|
Advances in 2D Transition Metal Dichalcogenides |
MA Hao, YANG Ruixia, LI Chunjing
|
School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300400; |
|
|
Abstract Molybdenum disulfide (MoS2) is two-dimensional layered material with natural tunable band-gap. Very recently, MoS2 have received much attention owing to its unusual properties and hold great potential for optoelectronic and microelectronic application. In this paper, basic structure and properties of MoS2 are introduced firstly. Then the common fabrication methods of MoS2 are analyzed. The applications of MoS2 in electronic and optoelectronic devices and the prospects for future applications are summarized in the end.
|
Published: 10 February 2017
Online: 2018-05-02
|
|
|
|
1 Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals[J]. Proceed National Academy Sci United States Am,2005,102(30):10451. 2 Dabidian N, Dutta Gupta S, Kholmanov I, et al. Experimental de-monstration of phase modulation and motion sensing using graphene-integrated metasurfaces[J]. Nano Lett,2016,16(6):3607. 3 Suh J, Bae D. Mechanical properties of polytetrafluoroethylene composites reinforced with graphene nanoplatelets by solid-state proce-ssing[J]. Compos Part B,2016,95:317. 4 Ambrosi A, Pumera M. Electrochemically exfoliated graphene and graphene oxide for energy storage and electrochemistry applications[J]. Chem A Eur J,2016,22(1):153. 5 Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Lett,2008,8(3):902. 6 Mattheiss L F.Band structures of transition-metal-dichalcogenide la-yer compounds[J]. Phys Rev B,1973,8(8):3719. 7 Wilson J A, Yoffe A D. The transition metal dichalcogenides discussion and interpretation of the observedoptical, electrical and structural properties[J]. Adv Phys,1969,18(73):193. 8 Han M Y, Ozyilmaz B, Zhang Y, et al. Energy band-gap enginee-ring of graphene nanoribbons[J]. Phys Rev Lett,2007,98(20):206805. 9 Eren B, Gysin U, Marot L, et al. Work function of few layer graphene covered nickel thin films measured with Kelvin probe force microscopy[J]. Appl Phys Lett,2016,108(4):041602. 10 Ding Z, Miao Z, Xie Z, et al. Functionalized graphene quantum dots as a novel cathode interlayer of polymer solar cells[J]. J Mater Chem A,2016,4(7):2413. 11 Hill A, Mikhailov S A, Ziegler K. Dielectric function and plasmons in graphene[J]. Europhys Lett,2009,87(2):27005. 12 Wan Y J, Yang W H, Yu S H, et al. Covalent polymer functiona-lization of graphene for improved dielectric properties and thermal stability of epoxy composites[J]. Compos Sci Technol,2016,122:27. 13 Mak K F, Lee C, Hone J, et al. Atomically thin MoS2: A new direct-gap semiconductor[J]. Phys Rev Lett,2010,105(13):136800. 14 Kuc A, Zibouche N, Heine T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2[J]. Phys Rev B,2011,83(24):245208. 15 Wang Qinghua, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nat Nanotechnol,2012,7(11):699 . 16 Zhao W, Ribeiro R M, Eda G. Electronic structure and optical signatures of semiconducting transition metal dichalcogenide nanosheets[J]. Accounts Chem Res,2014,48(1):91. 17 Pospischil A, Mueller T. Optoelectronic devices based on atomically thin transition metal dichalcogenides[J]. Appl Sci,2016,6(3):78. 18 Liu X, Zhang G, Pei Q X, et al. Phonon thermal conductivity of monolayer MoS2 sheet and nanoribbons[J]. Appl Phys Lett,2013,103(13):133113. 19 Ghatak S, Pal A N, Ghosh A. Nature of electronic states in atomically thin MoS2 field-effect transistors[J]. Am Chem Soc Nano,2011,5(10):7707. 20 Lee H S, et al. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap[J].Nano Lett,2012,12(7):3695. 21 Frindt R F. Single crystals of MoS2 several molecular layers thick[J]. J Appl Phys,1966,37(4):1928. 22 Joensen P, Frindt R F, Morrison S R. Single-layer MoS2[J]. Mater Res Bull,1986,21(4):457. 23 Eda H, Yamaguchi D Voiry, et al. Photoluminescence from chemically exfoliated MoS2[J]. Nano Lett,2011,11(12):5111. 24 Zeng Z, Yin Z, Huang X, et al. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication[J]. Angewandte Chemie Int Ed,2011,50(47):11093. 25 Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotechnol,2008,3(9):563. 26 Blake P, Brimicombe P D, Nair R R, et al. Graphene-based liquid crystal device[J]. Nano Lett,2008,8(6):1704. 27 Coleman J N, Lotya M, O′Neill A, et al. Two-dimensional nano-sheets produced by liquid exfoliation of layered materials[J]. Scien-ce,2011,331(6017):568. 28 Zhang S L, Choi H H, Yue H Y, et al. Controlled exfoliation of molybdenum disulfide for developing thin film humidity sensor[J]. Current Appl Phys,2014,14(3):264. 29 Zhou K G, Mao N N, Wang H X, et al. A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues[J]. Angewandte Chemie Int Ed,2011,50(46):10839. 30 Zhan Y, Liu Z, Najmaei S, et al. Large-area vapor phase growth and characterization of MoS2 atomic layers on a SiO2 substrate[J]. Small,2012,8(7):966. 31 Heyne M H, Chiappe D, Meersschaut J, et al. Multilayer MoS2 growth by metal and metal oxide sulfurization[J]. J Mater Chem C,2016,4(6):1295 . 32 Liu K K, Zhang W, Lee Y H, et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates[J]. Nano Lett,2012,12(3):1538. 33 Lee Y H, Zhang X Q, Zhang W, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition[J]. Adv Mater,2012,24(17):2320. 34 Zhou W, Zou X, Najmaei S, et al. Intrinsic structural defects in monolayer molybdenum disulfide[J]. Nano Lett,2013,13(6):2615. 35 Van der Zande A M, Huang P Y, Chenet D A, et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide[J]. Nat Mater,2013,12(6):554. 36 Yang X N, Li Q, Hu G F, et al. Controlled synthesis of high-quality crystals of monolayer MoS2 for nanoelectronic device application[J]. Sci China Mater,2016,59(3):183(in Chinese). 杨小年,李强,胡国锋,等.高质量单层MoS2的可控合成及其在微纳电子方面的应用[J]. 中国科学,2016,59(3):183. 37 Kang K, Xie S, Huang L, et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity[J]. Nature,2015,520(7549):656. 38 Jena D, Konar A. Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering[J]. Phys Rev Lett,2007,98(13):136805. 39 Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors[J]. Nat Nanotechnol,2011,6(3):147. 40 Das S, Chen H Y, et al. High performance multilayer MoS2 transistors with scandium contacts [J]. Nano Lett,2013,13(1):100. 41 Kang J, Liu W, Banerjee K. High-performance MoS2 transistors with low-resistance molybdenum contacts[J]. Appl Phys Lett,2014,104(9):093106. 42 Lin J D, Han C, Wang F, et al. Electron-doping-enhanced trion formation in monolayer molybdenum disulfide functionalized with ce-sium carbonate[J]. Am Chem Soc Nano,2014,8(5):5323. 43 Yang L, Majumdar K, Liu H, et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2[J]. Nano Lett,2014,14(11):6275. 44 Radisavljevic B, Whitwick M B, Kis A. Integrated circuits and logic operations based on single-layer MoS2[J]. Am Chem Soc Nano,2011,5:9934. 45 Radisavljevic B, Whitwick M B, Kis A. Small-signal amplifier based on single-layer MoS2[J]. Appl Phys Lett,2012,101(4):043103. 46 Wu D, Zhang Z, Lv D, et al. High mobility top gated field-effect transistors and integrated circuits based on chemical vapor deposition-derived monolayer MoS2[J]. Mater Express,2016,6(2):198. 47 Yu C H, Su P, Chuang C T. Performance benchmarking of monolayer and bilayer two-dimensional transition metal dichalcogenide (TMD) based logic circuits[C]//2016 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA). IEEE,2016:1. 48 Bertolazzi S, Krasnozhon D, Kis A. Nonvolatile memory cells based on MoS2/graphene heterostructures[J]. Am Chem Soc Nano,2013,7:3246. 49 Li H, Yin Z, He Q, et al. Fabrication of single-and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature[J]. Small,2012,8(1):63. 50 Cho B, Hahm M G,Choi M, et al. Charge-transfer-based gas sen-sing using atomic-layer MoS2[J]. Scientific Reports,2015,5:8052. 51 Long H, Harley-Trochimczyk A, Pham T, et al. High surface area MoS2/graphene hybrid aerogel for ultrasensitive NO2 detection[J]. Adv Funct Mater,2016,3:1002. 52 Shokri A A, Salami N. Gas sensor based on MoS2 monolayer[J]. Sensors Actuators B,2016,236:378. 53 Liu B, Chen L, Liu G, et al. High-performance chemical sensing using schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors[J]. Am Chem Soc Nano,2014,8(5):5304. 54 Yin Z, Li H, Li H, et al. Single-layer MoS2 phototransistors[J]. Am Chem Soc Nano,2011,6(1):74. 55 Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nature Nanotechnol,2013,8(7):497. 56 Sundaram R S, Engel M, Lombardo A, et al. Electroluminescence in single layer MoS2[J]. Nano Lett,2013,13(4):1416. 57 Ye Y, Ye Z, Gharghi M, et al. Exciton-dominant electroluminescence from a diode of monolayer MoS2[J]. Appl Phys Lett,2014,104(19):193508. 58 Withers F, Del Pozo-Zamudio O, Mishchenko A, et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures[J]. Nat Mater,2015,14(3):301. 59 Bernardi M, Palummo M, Grossman J C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensio-nal monolayer materials[J]. Nano Lett,2013,13(8):3664. 60 Shanmugam M, Durcan C A, Yu B. Layered semiconductor molybdenum disulfide nanomembrane based Schottky-barrier solar cells[J]. Nanoscale,2012,4(23):7399. 61 Tsai M L, Su S H, Chang J K, et al. Monolayer MoS2 heterojunction solar cells[J]. Am Chem Soc Nano,2014,8(8):8317. |
|
|
|