RESEARCH PAPER |
|
|
|
|
|
Mechanical Performance and Size Effect of Engineered Cementitious Composite (ECC) Subjected to Uniaxial Compression |
JIANG Shiyong1, TAO Shuai2,YAO Weilai2,WU Shijuan2,CAI Tao2
|
1 Department of Training, Logistical Engineering University, Chongqing 401331; 2 Department of Military Civil Engineering, Logistical Engineering University, Chongqing 401331 |
|
|
Abstract Engineered cementitious composite (ECC) has excellent toughness, dissipation capacity and distribution of multiple cracking, application of ECC can improve seismic ability of structure. The compressive properties, deformation mechanism and size effect of ECC were studied based on the uniaxial compression test of 60 specimens with three different height-thickness ratio. Accor-ding to the test results, the axial compressive stress-strain curves and performance rule of different specimens were obtained.Engineered cementitious composite showed good compressive resilience in the compression failure, which was markedly different from ordinary concrete. The destruction of ECC specimens remains relatively complete and the ultimate strain was 10 times higher than concrete.Different from ordinary concrete prism test results,the ratio of height to thickness had little effect on the strength of ECC prism. However,the height-thickness ratio has a great influence on the peak strain and toughness index of ECC prism. Furthermore, the microstructure of ECC with high toughness was observed through scanning electron microscope, and fiber distribution, bridge connection situation and fiber reinforcement mechanism of ECC were analyzed.
|
Published: 25 December 2017
Online: 2018-05-08
|
|
|
|
1 Li V C. Large volume, high-performance applications of fibers in civil engineering[J]. J Appl Polym Sci, 2010, 83(3):660. 2 Mehta P K, Monteiro P. Concrete structure, properties, and materials[M]. New Jersey:Prentice-Hall, 1986. 3 Lin Z, Kanda T, Li V C. On interface property characterization and performance of fiber reinforced cementitious composites[J]. Concr Sci Eng, 1999, 1(3):173. 4 Li V C, Leung C K Y. Steady-state and multiple cracking of short random fiber composites[J]. J Eng Mech, 1992, 118(11):2246. 5 Lin Y W, Wotherspoon L, Ingham J M. Tensile properties of an engineered cementitious composite shotcrete mix[J]. J Mater Civil Eng, 2014, 27(7):04014205. 6 Xu S L, Li H D. A review on the development of research and application of ultra high toughness cementitious composites[J]. China Civil Eng J, 2008, 41(6):13(in Chinese). 徐世烺, 李贺东. 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008, 41(6):13. 7 Jiang S Y, Tao S, Li X Y. Review on seismic performance of FRP reinforced engineered cementitious composite (ECC) flexural members and structures[J]. Fiber Reinforced Plastics/Compos, 2017(7):92 (in Chinese). 江世永,陶帅,李雪阳. FRP筋高韧性纤维混凝土复合结构抗震性能研究进展[J]. 玻璃钢/复合材料, 2017(7):92. 8 Su J, Fang Z, Yang Z. Experimental study on the size effect of concrete uniaxial compressive behavior[J]. Ind Constr, 2012, 42(6):122(in Chinese). 苏捷, 方志, 杨钻. 混凝土单轴受压性能尺寸效应的试验研究[J]. 工业建筑, 2012, 42(6):122. 9 Li X Y, Jiang S Y, Tao S, et al. Orthogonal experimental study on compressive behavior of engineered cementitious composites[J]. Bull Chin Ceram Soc, 2017, 36(2):595(in Chinese). 李雪阳, 江世永, 陶帅, 等. 高韧性水泥基复合材料抗压强度正交试验研究[J]. 硅酸盐通报, 2017, 36(2):595. 10Li X Y, Jiang S Y, Yao W L, et al. Tensile experiments and orthogonal analysis of high toughness cementitious composites[J]. J Logistical Engineering University, 2017(3):29(in Chinese). 李雪阳,江世永,姚未来,等. 高韧性水泥基复合材料拉伸试验与正交分析[J]. 后勤工程学院学报,2017(3):29. 11CECS13:2009 纤维混凝土试验方法标准[S]. 北京: 中国建筑工业出版社, 2010. 12顾祥林. 混凝土结构基本原理[M].第3版. 上海:同济大学出版社, 2015. 13Deng M K, Qin M, Liang X W. Experimental study of compressive behavior of engineered cementitious composites[J]. Ind Constr, 2015, 45(4):120(in Chinese). 邓明科, 秦萌, 梁兴文. 高延性纤维混凝土抗压性能试验研究[J]. 工业建筑, 2015, 45(4):120. 14Xu S L, Cai X R, Zhang Y H. Experimental measurement and analysis of the axial compressive stress-strain curve of ultra high toughness cementitious composites[J]. China Civil Eng J, 2009(11):79 (in Chinese). 徐世烺, 蔡向荣, 张英华. 超高韧性水泥基复合材料单轴受压应力-应变全曲线试验测定与分析[J]. 土木工程学报, 2009(11):79. 15Zhou J, Pan J, Leung C K Y. Mechanical behavior of fiber-reinforced engineered cementitious composites in uniaxial compression[J]. J Mater Civil Eng, 2015, 27(1):04014111. 16Bazant Z P.Size effect[J].Int J Solids Struct,2000,37(4):69. 17Cai X R. The basic mechanical performance and strain hardening process theoretical analysis of ultra high toughness cementitious composites [D]. Dalian: Dalian University of Technology, 2010 (in Chinese). 蔡向荣. 超高韧性水泥基复合材料基本力学性能和应变硬化过程理论分析[D]. 大连:大连理工大学, 2010. 18滕智明. 钢筋混凝土基本构件[M]. 北京:清华大学出版社, 1987. 19Li Q H, Zhou B M, Huang B T, et al. The size effect of compressive properties of ultra high toughness cementitious composites (UHTCC)[J]. J Hydraulic Eng, 2015, 46(2):174. 李庆华, 周宝民, 黄博滔,等. 超高韧性水泥基复合材料抗压性能的尺寸效应研究[J]. 水利学报, 2015, 46(2):174. 20Han J G, Yan P Y. Review of concrete flexural toughness test and evaluation methods[J]. China Concr, 2010(11):42(in Chinese). 韩建国, 阎培渝. 混凝土弯曲韧性测试和评价方法综述[J]. 混凝土世界, 2010(11):42. 21Liu L, Ma Y F. Experimental validation of the translaminar fracture toughness concept for CFRP[J]. J Chongqing University of Technology (Nat Sci), 2016, 30(8):57(in Chinese). 刘璐, 马一凡. 基于复合材料层合板断裂韧性的实验研究[J]. 重庆理工大学学报(自然科学版), 2016, 30(8):57. 22Deng M K, Liu H B, Qin M, et al. Experimental research on compressive toughness of the high ductile fiber reinforced concrete[J]. J Xi’an University of Architecture & Technology (Nat Sci Ed), 2015, 47(5):660(in Chinese). 邓明科, 刘海勃, 秦萌,等. 高延性纤维混凝土抗压韧性试验研究[J]. 西安建筑科技大学学报(自然科学版), 2015, 47(5):660. 23Fanella D A, Naaman A E. Stress-strain properties of fiber reinforced mortar in compression[J]. J Am Concrete Institute, 1985, 82(4):475. 24Hus L S, Hus C T. Stress-strain relationship of high-strength fiber concrete under compression[J]. ACI Struct J, 1994, 91(4):448.25Mansur M A, Chin M S, Wee T H. Stress-strain relationship of high-strength fiber concrete in compression[J]. J Mater Civil Eng, 1999, 11(1):21. 26Monteiro P J M, Mehta P K. Concrete: Microstructure, properties and materials[M]. New Jersey: Prentice-Hall, 2006. 27Li V C, Wang Y, Backer S. Effect of inclining angle, bundling and surface treatment on synthetic fibre pull-out from a cement matrix[J]. Composites, 1990, 21(2):132. 28Ouyang C. Pullout of inclined fibers from cementitious matrix[J]. J Eng Mech, 1994, 120(120):2641. 29Markovic I. High-performance hybrid-fibre concrete: Development and utilization[D]. Delft: Delft University, 2006. |
|
|
|