RESEARCH PAPER |
|
|
|
|
|
Simulation Study of Light Propagation in Inverse-opal Structured Photonic Crystal |
XU Jian, ZHAO Wenjuan, FANG Gang, XU Qingbo
|
College of Information Science & Engineering, Ningbo University, Ningbo 315211 |
|
|
Abstract Mono-dispersed colloidal spheres could be self-assembled into face-centered cubic (FCC, lattice period constant is a) structured three-dimensional photonic crystal materials, furthermore, the photonic crystal of colloidal spheres could be used as a template for filling in with high refractive index optical material, then remove the colloidal spheres to obtain inversed-Opal structured photonic crystal material with high refractive index difference for integrated optical devices. In the present work, in order to know the light propagation in this kind of material, simulation study with the finite difference time domain method (FDTD) was carried out to understand different wavelength light-beam propagations in this kind of photonic crystal, as well as in straight-line and L-shape line defects. Simulation results indicated that the band-gap region located between a/λ= 0.45 to 0.55, and the transmission coefficients for light-beam in straight-line and L-shape line defects in this photonic crystal reached up to~65% and ~72%, respectively.
|
Published: 25 December 2017
Online: 2018-05-08
|
|
|
|
1 Song M, Wang X, Wang L, et al. Advances in the fabrication and application of photonic crystals[J]. Mater Rev:Rev,2016,30(7):22(in Chinese). 宋明丽,王小平,王丽军,等. 光子晶体制备及其应用研究进展[J]. 材料导报:综述篇,2016,30(7):22. 2 Sun J, Xing H. Effect of line defects on the band of two dimensional square photonic crystal[J]. J Infrared Millimeter Waves,2010,29(5):389(in Chinese). 孙家兆, 邢怀中. 线缺陷对二维四方圆柱形介质光子晶体禁带的影响[J]. 红外与毫米波学报,2010,29(5):389. 3 Wu Z, Li S, Zhang W, et al. Back reflector of solar cells consisting of one-dimensional photonic crystal and double-layered two-dimensional photonic crystal[J]. Acta Photon Sin, 2016,45(2):0223003-1(in Chinese). 武振华,李思敏,张文涛,等. 一维和双层二维光子晶体太阳能电池背反射器[J]. 光子学报,2016,45(2):0223003-1. 4 Feng J, Dong L, Wei L. Investigation on the spectrum of self-organized plasma photonic crystal[J]. J Synthetic Cryst,2016,45(2):328(in Chinese). 冯建宇,董丽芳,魏领燕. 自组织等离子体光子晶体的光谱研究[J]. 人工晶体学报,2016,45(2):328. 5 Chen Y, Fan H, Wang W, et al. Sensing model and performance of the surface defect photonic crystal with porous silicon[J]. Acta Optica Sin,2015,35(5):0523001(in Chinese). 陈颖,范卉青,王文跃,等. 多孔硅表面缺陷光子晶体的传感模型及特性[J]. 光学学报,2015,35(5):0523001. 6 Van Blaadere A. Materials science—Opals in a new light[J]. Science,1998,282:887. 7 Fleming J G, Lin S Y, El-Kady I, et al. All-metallic three-dimensional photonic crystals with a large infrared bandgap[J]. Nature,2002,417:52. 8 Zhang M. Wood pile structure of three-dimensional photonic crystal band gap characteristics[J]. Chinese J Spectro Lab, 2013,30(3):1222(in Chinese). 张明. 木堆结构三维光子晶体带隙特性[J]. 光谱实验室,2013,30(3):1222. 9 Kawashima S, Ishizaki K, Noda S. Light propagation in three-dimensional photonic crystals[J]. Opt Express,2010,18(1):386. 10Li Y, Xie K, Xu J, et al. Fabrication of silicon inverse opal photonic crystal with a complete photonic band gap in mid infrared range and its optical properties[J]. Acta Phys Sin, 2010,59(2):1082(in Chinese). 李宇杰,谢凯,许静,等. 中红外完全带隙Si反蛋白石光子晶体的制备与光学性能研究[J]. 物理学报,2010,59(2):1082. 11Wu J, Wang M. Three-dimensional colloidal crystal structures and analysis of propagation characteristics[J]. Optoelectron Technol, 2011,31(1):32(in Chinese). 吴婧,王鸣. 三维胶体晶体结构和传输特性分析[J]. 光电子技术,2011,31(1):32. 12Liu G, Liao Y, Chen Y, et al. Experiment fabrication and theory analysis of three-dimension high quality photonic crystals[J]. Acta Photon Sin, 2009,38(7):1707(in Chinese). 刘桂强,廖昱博,陈艳,等. 高质量三维光子晶体的实验制备及理论分析[J]. 光子学报,2009,38(7):1707. 13葛德彪, 闫玉波. 电磁波时域有限差分方法[M]. 第2版. 西安:西安电子科技大学出社,2002. 14Chen M, Huang L, Yu R. Four-order finite-difference time-domain method based on Liao’s absorbing boundary condition[J]. Acta Photon Sin, 2000,29(9):814(in Chinese). 陈明阳, 黄丽芳, 于荣金. 基于Liao氏吸收边界条件的四阶FDTD算法[J]. 光子学报,2000,29(9):814.
|
No related articles found! |
|
|
|
|