| METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
| Research Progress on the Tribo- and Corrosion- Resistant High-entropy Alloy Coatings |
| LI Weihua1,2,3, ZHOU Wenjie1,2,3, SONG Baorui2,3,*, HUANG Junwei4
|
1 Henan Key Laboratory of Infrastructure Corrosion and Protection, School of Civil Engineering and Transportation, North China University of Water Resources and Electric Power, Zhengzhou 450046, China 2 Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450046, China 3 Henan Academy of Sciences, Zhengzhou 450046, China 4 China Water Conservancy and Hydropower Engineering Bureau No.11 Co., Ltd., Zhengzhou 450001, China |
|
|
|
|
Abstract In the past 20 years, as a research hotspot in high-entropy alloy materials, high-entropy alloy coatings have attracted widespread attention in the field of materials science due to their unique physical and chemical properties, such as excellent corrosion resistance, wear resistance, and good mechanical strength, compared to traditional coatings. This review aims to summarize the current research progress on the tribo-and corrosion-resistant high-entropy alloy coatings, introduce the basic concepts and commonly used definitions of high-entropy alloys, analyze the thermodynamic phase formation criteria, and explore the process characteristics of different preparation techniques (such as laser cladding, thermal spraying, magnetron sputtering, etc.) as well as their effects on the microstructure and properties of high-entropy alloy coatings. Compared to the preparation technology of high-entropy alloy bulk materials, the preparation method of high-entropy alloy coatings is easier to achieve rapid cooling, making the coating tend to form solid solutions or amorphous phases, which have better comprehensive performance. By adjusting the alloy composition and optimizing the preparation process parameters, the anti-corrosion and wear resistance of high-entropy alloy coatings can be significantly improved. Finally, the research status of high-entropy alloy coatings in terms of corrosion resistance, wear resistance, and abrasion resistance are summarized, and the opportunities and challenges currently faced are analyzed. The future research directions and application prospects are also discussed.
|
|
Published: 25 January 2026
Online: 2026-01-27
|
|
|
|
|
1 Ding S, Xiang T, Li C, et al. Materials & Design, 2017, 117, 280. 2 Praveen S, Kim H S. Advanced Engineering Materials, 2018, 20(1), 1700645. 3 Huang P K, Yeh J W, Shun T T, et al. Advanced Engineering Materials, 2004, 6(1-2), 74. 4 Lin C, Duh J. Surface and Coatings Technology, 2008, 203(5-7), 558. 5 Braic V, Balaceanu M, Braic M, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 10, 197. 6 El-Aty A A, Xu Y, Zhang S H, et al. Journal of Advanced Research, 2019, 18, 19. 7 Kumar D, Jain J, Gosvami N N. Tribology Letters, 2022, 70(1), 27. 8 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299. 9 Luo H, Sohn S S, Lu W, et al. Nature Communications, 2020, 11(1), 3081. 10 Xiang K, Chen L Y, Chai L, et al. Applied Surface Science, 2020, 517, 146214. 11 Cheng H, Pan Z, Fu Y, et al. Journal of the Electrochemical Society, 2021, 168(11), 111502. 12 Salam M Y A, Ogunmuyiwa E N, Manisa V K, et al. Results in Engineering, 2025, 104441. 13 Yeh J W. Annales de Chimie-Science des Matériaux, 2006, 31(6), 633. 14 Zhao Y F, Wang Y Q, Wu K, et al. Scripta Materialia, 2018, 154, 154. 15 Tsai K Y, Tsai M H, Yeh J W. Acta Materialia, 2013, 61(13), 4887. 16 Wen Y X, Zhang Y. Metal World, 2023(5), 1 (in Chinese). 温雨欣, 张勇. 金属世界, 2023(5), 1. 17 Chen T, Shun T, Yeh J W, et al. Surface and Coatings Technology, 2004, 188, 193. 18 Feng R, Gao M C, Lee C, et al. Entropy, 2016, 18(9), 333. 19 Zhang Y, Lu Z, Ma S, et al. MRS Communications, 2014, 4(2), 57. 20 Cai Z, Jin G, Cui X, et al. Materials Characterization, 2016, 120, 229. 21 Zhang S, Wu C, Zhang C. Materials Letters, 2015, 141, 7. 22 Wu Z, Wang X, Cao Q, et al. Journal of Alloys and Compounds, 2014, 609, 137. 23 Cui K, Zhang Y. Coatings, 2023, 13(3), 635. 24 Gangireddy S, Gwalani B, Soni V, et al. Materials Science and Enginee-ring A, 2019, 739, 158. 25 Ma Z, Xia C, Zhong H, et al. Surface and Coatings Technology, 2023, 455, 129217. 26 Xia X C, Zhang E K, Ding J, et al. Acta Metallica Sinica, 2025, 61 (1), 59 (in Chinese). 夏兴川, 张恩宽, 丁俭, 等. 金属学报, 2025, 61(1), 59. 27 Cai Y, Chen Y, Manladan S M, et al. Materials & Design, 2018, 142, 124. 28 Arif Z U, Khalid M Y, Ur Rehman E, et al. Journal of Manufacturing Processes, 2021, 68, 225. 29 Chong Z, Sun Y, Cheng W, et al. Materials Today Communications, 2022, 33, 104417. 30 Da Q, Ma G Z, Kang J J, et al. Materials Reports, 2024, 38 (24), 196 (in Chinese). 笪强, 马国政, 康嘉杰, 等. 材料导报, 2024, 38(24), 196. 31 Meghwal A, Anupam A, Murty B, et al. Journal of Thermal Spray Technology, 2020, 29, 857. 32 Dong D X, Liu G Q, Zhang Y, et al. China Metal Forming Equipment Manufacturing Technology, 2023, 58 (4), 57 (in Chinese). 董德骁, 刘国强, 张彦, 等. 锻压装备与制造技术, 2023, 58(4), 57. 33 Liao W B, Wu Z X, Lu W, et al. Intermetallics, 2021, 132, 107138. 34 Wu Z X, He M J, Feng C S, et al. Journal of Thermal Spray Technology, 2022, 1. 35 Noble N, Radhik A N, Sathishkumar M, et al. Tribology International, 2023, 185, 108525. 36 Ju Y, Ai L, Qi X, et al. Materials, 2023, 16(10), 3764. 37 Zou Y, Ma H, Spolenak R. Nature Communications, 2015, 6(1), 7748. 38 Wang Z, Wang C, Zhao Y L, et al. International Journal of Plasticity, 2020, 131, 102726. 39 Wang D L. Study on the corrosion behavior of TiZrHfBeCu(Ni) high-entropy amorphous alloys in 3.5wt% NaCl solution. Master’s Thesis, Huazhong University of Science and Technology, China, 2021 (in Chinese). 王东亮. TiZrHfBeCu(Ni)高熵非晶合金在3.5wt% NaCl溶液中的腐蚀行为研究. 硕士学位论文, 华中科技大学, 2021. 40 Fan J, Yao H W, Pu J B. China Surface Engineering, 2024, 37(6), 21 (in Chinese). 范军, 姚宏伟, 蒲吉斌. 中国表面工程, 2024, 37(6), 21. 41 Zhang G, Liu H, Tian X, et al. Journal of Materials Engineering and Performance, 2020, 29, 278. 42 Gu B, Zhang H, Wang Y, et al. Surface and Coatings Technology, 2024, 494, 131473. 43 Zhao S, He L X, Fan X X, et al. Surface and Coatings Technology, 2019, 375, 215. 44 Zhang S, Cai Z, Pu J, et al. Applied Surface Science, 2019, 483, 870. 45 Li J, Chen Y, Zhao Y, et al. Journal of Alloys and Compounds, 2022, 926, 166807. 46 Song B, Hua Y, Zhou C, et al. Corrosion Science, 2022, 196, 110020. 47 Kang J, Liu H, Du H, et al. Applied Surface Science, 2023, 629, 157368. 48 Chen B, Li X, Tian L, et al. Journal of Alloys and Compounds, 2023, 966, 171630. 49 Zhang X, Cui X, Jin G, et al. Journal of Alloys and Compounds, 2022, 891, 161756. 50 Meghal A, Anupam A, Schulz C, et al. Wear, 2022, 506, 204443. 51 Zhu J, Cheng X, Zhang L, et al. Journal of Alloys and Compounds, 2022, 925, 166698. 52 Rong Z, Wang C, Wang Y, et al. Journal of Alloys and Compounds, 2022, 921, 166061. 53 Wetzel A, Von Der Au M, Dietrich P M, et al. Applied Surface Science, 2022, 601, 154171. 54 Kemény D M, Pálfi N M, Fazakas É. Materials Today: Proceedings, 2021, 45, 4250. 55 Shang C, Axinte E, Ge W, et al. Surfaces and Interfaces, 2017, 9, 36. 56 Shang C, Axinte E, Sun J, et al. Materials & Design, 2017, 117, 193. 57 Guo Y, Shang X, Liu Q. Surface and Coatings Technology, 2018, 344, 353. 58 Heidari E, Atapour M, Obeydavi A. Journal of Alloys and Compounds, 2024, 976, 173265. 59 Ye Q, Feng K, Li Z, et al. Applied Surface Science, 2017, 396, 1420. 60 Zhng W, Wang M, Wang L, et al. Applied Surface Science, 2019, 485, 108. 61 Shi Y, Yang B, Liaw P K. Metals, 2017, 7(2), 43. 62 Listyawan T A, Lee H, Park N, et al. Journal of Materials Science & Technology, 2020, 57, 123. 63 Luo J, Sun W, Liang D, et al. Acta Materialia, 2023, 243, 118503. 64 Alvi S, Jarzabek D M, Kohan M G, et al. ACS Applied Materials & Interfaces, 2020, 12(18), 21070. 65 Ren B, Zhao R F, Zhang G P, et al. Ceramics International, 2022, 48(12), 169011. 66 Liu C, Li Z, Lu W, et al. Nature Communications, 2021, 12(1), 5518. 67 Ren Z, Hu Y, Tong Y, et al. Tribology International, 2023, 182, 108366. 68 Zhao W, Yu K, Ma Q, et al. Tribology International, 2023, 188, 108827. 69 Xu W, Liao M, Liu X, et al. Ceramics International, 2021, 47(17), 24752. 70 Supekar R, Nair R B, Mcdonald A, et al. Wear, 2023, 516, 204596. 71 Chen S, Yan W, Liao B, et al. Ceramics International, 2023, 49(4), 6880. 72 Li R, Wang M, Yuan T, et al. Metallurgical and Materials Transactions A, 2017, 48, 841. 73 Lin D Y, Zhang N N, He B, et al. Journal of Iron and Steel Research International, 2017, 24(2), 184. 74 Ai G G, Jiang F T, Si F, et al. Hot Working Technology, 2025(8), 1(in Chinese). 艾根根, 姜凤阳, 思芳, 等. 热加工工艺, 2025(8), 1. 75 Wang Z H, Fu J W, Feng Y, et al. The Chinese Journal of Nonferrous Metals, 2025, 35(3), 805(in Chinese). 王子豪, 付俊伟, 冯勇, 等. 中国有色金属学报, 2025, 35(3), 805. 76 Fu Y C, Hao Q W, Qian J, et al. Journal of Chinese Society for Corrosion and Protection, 2024, 44(6), 1529. 77 Lu Z, Mao Y, Ren S, et al. Materials Characterization, 2021, 176, 111115. 78 Fu Z, Ding S, Tian A, et al. Reviews on Advanced Materials Science, 2024, 63(1), 20240018. 79 Ge Y, Cheng J, Mo J, et al. Journal of Alloys and Compounds, 2024, 976, 173173. 80 Li J, Dong L, Dong X, et al. Applied Surface Science, 2021, 570, 151236. 81 Papageorgiou N, von Bonin A. Tribology International, 2014, 73, 177. 82 Zhang H, Guan T, Zhang N, et al. International Journal of Machine Tools and Manufacture, 2021, 170, 103802. 83 Yu S, Hu Y, Liu X, et al. Metals, 2022, 12(10), 1561. 84 Liu Z C, Kong D J. Corrosion Science, 2024, 227, 111766. 85 Zhang X, Yu Y, Li T, et al. Tribology International, 2024, 193, 109401. |
|
|
|