| METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
| Study on Electrodeposition of Al-Ti Alloy in AlCl3-EMIC Ionic Liquid and Its Corrosion Resistance |
| ZHONG Haixia, ZHONG Qingdong*, YANG Jian, ZHANG Shujian, WANG Xuemei, FAN Jiabao
|
| School of Materials Science and Engineering, Shanghai University, State Key Laboratory of Metallurgy and Preparation of High-quality Special Steel, Shanghai Key Laboratory of New Technology Development and Application of Iron and Steel Metallurgy, Shanghai 20044, China |
|
|
|
|
Abstract This study focuses on optimizing the electrodeposition process of Al-Ti alloy coatings by regulating Ti content and enhancing corrosion resis-tance for high-performance protective applications. Al-Ti alloy coatings were prepared on a copper substrate using a constant current method, with an electrolyte composed of a 2∶1 molar ratio of AlCl3 to 1-ethyl-3-methylimidazolium chloride (EMIC) ionic liquid and potassium fluorotita-nate (K2TiF6) as the Ti source. By adjusting the current density (10—20 mA/cm2) and electrodeposition time (45—120 min), the effects on the morphology, composition, and corrosion resistance of the coatings were systematically investigated. It was observed that the Ti content in the coatings significantly increases with increasing current density, while the densification of the coatings improves at higher current densities. At a current density of 20 mA/cm2 and an electroplating time of 60 min, the Ti content reaches its maximum value of 20.43%. Electrochemical tests showed that the self-corrosion current density decreases significantly from 56.520 μA/cm2 to 1.068 μA/cm2 with increasing current density. A passivation phenomenon is observed at a current density of 15 mA/cm2, characterized by a plateau region in the anodic polarization curve. With increasing electrodeposition time, the charge transfer resistance and film resistance of the coatings increases. At an electroplating time of 90 min, the densification of the coatings is further enhanced, resulting in a slower electrochemical reaction rate and significantly improved protective performance. The coatings prepared at a current density of 15 mA/cm2 and an electroplating time of 90 min exhibit optimal corrosion resistance.
|
|
Published: 25 January 2026
Online: 2026-01-27
|
|
|
|
|
1 Chang S M, Shen R Q, Wu L Z, et al. RSC Advances, 2025, 15(8), 6413. 2 Bäcke O, Petterson H, Stiens D, et al. International Journal of Refractory Metals and Hard Materials, 2025, 128, 107075. 3 Nahian M K, Reddy R G. The Minerals, Metals & Materials Series, 2025, 38, 1103. 4 Yu H M, Lv C, Yan C S, et al. Small Methods, 2024, 8(6), 2300758. 5 Kong L M, Kan H M, Meng Y Y, et al. Light Alloy Processing Technology, 2022, 50(1), 1(in Chinese). 孔令明, 阚洪敏, 孟媛媛, 等. 轻合金加工技术, 2022, 50(1), 1. 6 Wang L L, Jiao H D, Yuan R, et al. Rare Metals, 2024, 3(10), 4921. 7 Pérez-Álvarez R, González-Gómez P Á, Santana D, et al. Applied Thermal Engineering, 2022, 216, 119097. 8 Prieto C, Ruiz-Cabañas J, Madina V, et al. Solar Energy Materials and Solar Cells, 2022, 247, 111943. 9 Jiang D X, Lu J F, Ding J, et al. Solar Energy Materials and Solar Cells, 2024, 269, 112801. 10 Robin A, Ribeiro R B. Journal of Applied Electrochemistry, 2000, 30, 239. 11 Zhong S, Song T, Zhang Y R, et al. Science in China: Chemistry, 2023, 53(10), 2008(in Chinese). 钟声, 宋婷, 张钰瑞, 等. 中国科学: 化学, 2023, 53(10), 2008. 12 Usman M, Wirzal M D H, Hizam S M, et al. Journal of Molecular Li-quids, 2025, 417, 126537. 13 Foong C Y, Lau X L, Wirzal M D H, et al. Journal of Molecular Li-quids, 2022, 368, 120677. 14 Qiao Y, Chen L P, Yuwen F Y, et al. Applied Surface Science, 2024, 643, 158677. 15 Foong C Y, Zulkifli M F M, Wirzal M D H, et al. Journal of Molecular Liquids, 2021, 333, 115884. 16 Pradhan D, Reddy R G. Electrochimica Acta, 2009, 54(6), 1874. 17 Pradhan D, Reddy R G, Lahiri A. Metallurgical and Materials Transactions B, 2009, 40, 114. 18 Lahiri A, Das R. Materials Chemistry and Physics, 2012, 132, 34. 19 Zhang X Y, Hua Y X, Xu C Y, et al. Electrochimica Acta, 2011, 56(24), 8530. 20 Xu C Y, Hua Y X, Zhang Q B, et al. Journal of Solid State Electroche-mistry, 2017, 21, 1349. 21 Cvetković V S, Vukićević N M, Milićević-Neumann K, et al. Metals, 2020, 10, 88. 22 Tsuda T, Hussey C L, Stafford G R, et al. Journal of the Electrochemical Society, 2003, 150, C234. 23 Yang R X, Xie X M, Yang E H, et al. Surface engineering in China, 2023, 36(2), 166(in Chinese). 杨瑞霞, 谢小梦, 杨尔慧, 等. 中国表面工程, 2023, 36(2), 166. 24 Rahmati M, Raeissi K, Toroghinejad M R, et al. Journal of Magnesium and Alloys, 2022, 10(9), 2574. 25 Gugua E C, Ujah C O, Asadu C O, et al. Hybrid Advances, 2024, 7, 100286. 26 BakkarA. ChemEngineering, 2025, 9(1), 16. 27 Abood H M, Abbott A P, Ballantyne A D, et al. Chemical Communications, 2011, 47, 3523. 28 Li B, Fan C H, Chen Y, et al. Electrochim Acta, 2011, 56, 5478. 29 Zhang L, Guo J Q, Yan T, et al. Applied Surface Science, 2018, 434, 633. 30 Xue D P, Xu B J, Chen Y M. et al. Journal of Chemical Engineering, 2015, 66(S1), 282(in Chinese). 薛东朋, 徐霸津, 陈益明, 等. 化工学报, 2015, 66(S1), 282. 31 Zhang Y L, Wang Q, Wang D T, et al. Journal of Materials Engineering and Performance, 2025, 34, 1016. 32 Jiao H D. Journal of Advanced Thermal Science Research, 2021, 8, 71. 33 Zeng F F, Qiu L C, Zhu J F, et al. Ceramics International, 2024, 50, 41904. 34 El-Katori E E, Nessim M I, Deyab M A, et al. Journal of Molecular Li-quids, 2021, 337, 116467. 35 Wu Z W, Li S L, Wang N, et al. Vacuum, 2024, 224, 113122. 36 Zhang P, Yue X J, Gao Y R, et al. Vacuum, 2024, 219, 112700. 37 Dai S, Liao L H, Feng Y, et al. Journal of Materials Research and Technology, 2024, 30, 1426. 38 Adesina A Y, Ahmed H M, Suleiman R K, et al. Materials, 2022, 15(24), 8780. 39 Han B, Zhu S G, Dong W W, et al. International Journal of Refractory Metals and Hard Materials, 2021, 99, 105566. 40 Liu H L, Tong Z P, Zhou W F, et al. Journal of Alloys and Compounds, 2020, 846, 155837. 41 Chen S Y, Li F S, Liu Q, et al. Journal of Materials Engineering and Performance, 2020, 29, 3420. 42 Meng S P, Yu Y Q, Zhang X B, et al. Vacuum, 2024, 221, 112911. 43 Luo H, Yu Q, Dong C F, et al. Corrosion Science, 2018, 139, 185. 44 Vivegnis S, Devillers S, Delhalle J, et al. Protection of Metals and Physical Chemistry of Surfaces, 2018, 54, 652. 45 Ren G C, Zheng Y, Xiong R Z, et al. Materials Characterization, 2024, 218, 114516. 46 Braun S, Wiemer M, Schulz S E. Micromachines, 2024, 15(6), 746. 47 Zehtab M, Najafisayar P. Results in Surfaces and Interfaces, 2024, 15, 100215. 48 Shao Z X, Wu B T, Li P B, et al. Materials Characterization, 2023, 199, 112844. 49 Shao Z X, Tang C, Liu X H, et al. Corrosion Science, 2024, 233, 112071. 50 Maniam K K, Paul S A. Coatings, 2021, 11, 80. 51 Zhao H, Ye L Y, Cheng Q S, et al. Journal of Alloys and Compounds, 2023, 943, 169198. 52 Zhang Y, Wang Z N, Huang S Y, et al. Corrosion Science, 2024, 235, 112185. |
|
|
|