| INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
| Preparation of K2O-PbO-SiO2 Ancient Glass and the Effect of Composition on Its Microstructure and Properties |
| ZHAO Ting, ZHAI Jiahao, ZHU Jianfeng, QIN Yi*
|
| Shaanxi Key Laboratory of Green Preparation and Functionalization of Inorganic Materials, Key Laboratory of Materials and Technology for Underground Cultural Relics Protection, Ministry of Education, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China |
|
|
|
|
Abstract Glass compositions with varying m(SiO2)/m(CaO+CaF2) ratios were designed using potassium carbonate (K2CO3), lead tetraoxide (Pb3O4), and silicon dioxide (SiO2) as the primary raw materials, copper oxide (CuO) as the colorant, and calcium fluoride (CaF2) as the flux. The replica of ancient glass of the K2O-PbO-SiO2 system has been successfully realized by the melt-cast molding method. On this basis, the influence of CaF2 content on the physical phase composition, network structure, microscopic morphology, chromaticity, and microhardness of the ancient glass of this system was investigated under a constant m(SiO2)/m(CaO+CaF2) ratio, and the mechanism of the role of CaF2 in the ancient glass was elucidated. The results show that the replica glass is closest to the ancient glass when the m(SiO2)/m(CaO+CaF2) ratio is 4.252. At this case, when the CaF2 content is less than 6%, CaF2 acts as a flux, and the glass is transparent and dark blue, and when the CaF2 content is greater than 6%, the Si-O bond is destroyed, the chemical stability of the glass system decreases, the number of nuc-leation sites increases, and fine CaF2 crystals are precipitated, and the glass transmittance decreases, at this time the glass is greenish; Its hardness decreases slightly with the increase of CaF2 content, from 5.0 GPa to 4.25 GPa. Combined with the requirements of excellent light shading property, appearance color, and suitable hardness, the optimal CaF2 content is 6%. The findings are of great theoretical and practical significance for the scientific knowledge of the K2O-PbO-SiO2 system ancient glass and subsequent conservation and restoration.
|
|
Published: 25 December 2025
Online: 2025-12-17
|
|
|
|
|
1 Gan F X, Huang Z F, Xiao B R. Journal of Silicate, 1978(Z1), 99(in Chinese). 干福熹, 黄振发, 肖炳荣. 硅酸盐学报, 1978(Z1), 99. 2 Gan F X. Journal of Silicate, 2004, 32(2), 182(in Chinese). 干福熹. 硅酸盐学报, 2004, 32(2), 182. 3 Seligman C G, Ritchie P D, Beck H C, et al. Nature, 1936, 138(3495), 721. 4 Beck H C, Seligman C G. Nature, 1934, 133(6), 982. 5 Gan F X, Cheng H S, Li Q H. Science in China, Series E, 2007, 37(3), 382(in Chinese). 干福熹, 承焕生, 李青会. 中国科学:E辑, 2007, 37(3), 382. 6 Gan F, Robertl B, Tian S. Ancient glass research along the silk road. World Scientific Publishing Co. Pte. Ltd, UK, 2009, pp. 41. 7 Li F, Li Q H, Gan F X, et al. Journal of Silicates, 2005, 33(5), 581(in Chinese). 李飞, 李青会, 干福熹, 等. 硅酸盐学报, 2005, 33(5), 581. 8 Li Q H, Gan F X, Gu D H. Studies in the History of Natural Sciences, 2007, 26(2), 234(in Chinese). 李青会, 干福熹, 顾冬红. 自然科学史研究, 2007, 26(2), 234. 9 Gan F X, Zhao H X, Li Q H, et al. Jianghan Archaeology, 2010(2), 108(in Chinese). 干福熹, 赵虹霞, 李青会, 等. 江汉考古, 2010(2), 108. 10 Cui J F, Wu X H, Tan Y H, et al. Journal of Silicates, 2009, 37(11), 1909(in Chinese). 崔剑锋, 吴小红, 谭远辉, 等. 硅酸盐学报, 2009, 37(11), 1909. 11 Shi M G, He O L, Wu Z D, et al. Silicate Bulletin, 1986(1), 23(in Chinese). 史美光, 何欧里, 吴宗道, 等. 硅酸盐通报, 1986(1), 23. 12 Dong J Q, Li Q H, Gan F X, et al. Progress of Materials in China, 2012, 31(11), 9(in Chinese). 董俊卿, 李青会, 干福熹, 等. 中国材料进展, 2012, 31(11), 9. 13 Tian C. Heritage Science, 2021, 9(1), 61. 14 Verweij H,Konijnendijk W L. Journal of the American Ceramic Society, 1976, 59(11), 517. 15 Zhou Y, Jin Y, Wang K, et al. Heritage Science, 2019, 7(1), 56. 16 Wang C Y, Li S J, Tao Y. Glass, 2017, 44(5), 3(in Chinese). 王承遇, 李松基, 陶瑛. 玻璃, 2017, 44(5), 3. 17 Yi J L, Tu S J. Journal of Silicate, 1984(4), 20(in Chinese). 易家良, 涂淑进. 硅酸盐学报, 1984(4), 20. 18 Zhang Y, Jia C, Sun O, et al. Conservation and Archaeological Science, 2021, 33(1), 73(in Chinese). 张瑜, 贾翠, 孙鸥, 等. 文物保护与考古科学, 2021, 33(1), 73. 19 Kan Y H. Analysis of glass technology unearthed from the late Yuan and early Ming glass workshops in Boshan, Shandong. Master’s Thesis, Shandong University, China, 2022(in Chinese). 阚颖浩. 山东博山元末明初玻璃作坊出土玻璃科技分析. 硕士学位论文, 山东大学, 2022. 20 Christian R. Chemistry of Materials, 2005, 17(23), 5843. 21 Imanieh M H, Yekta B E, Marghussian V, et al. Solid State Sciences, 2013(17), 76. 22 Stoica M, Patzig C, Bocker C, et al. Journal of Materials Science, 2017, 52(23), 13390. 23 Wang Z, Cheng L. Journal of Materials Science, 2015, 50(11), 4066. 24 Lu F J, Li C C, Ye J Y, et al. Silicate Bulletin, 2024, 43(6), 2206(in Chinese). 逯凡杰, 李长成, 叶家元, 等. 硅酸盐通报, 2024, 43(6), 2206. 25 Qin J, Cui C, Cui X Y, et al. Journal of Artificial Crystals, 2016, 45(5), 1153(in Chinese). 秦娟, 崔崇, 崔晓昱, 等. 人工晶体学报, 2016, 45(5), 1153. 26 Mahdy E A, Ibrahim S. Journal of Molecular Structure, 2012, 1027(1), 81. 27 Dantas N, Ayta W, Silva A, et al. Spectrochimica Acta Part A, 2011, 81(1), 140. 28 Kim G H, Sohn I. Journal of Non-Crystalline Solids, 2012, 358(12), 1530. 29 Okuno M, Zotov N, Schmücker M, et al. Journal of Non-Crystalline Solids, 2005, 351(12), 1032. 30 Zeng H R, Ruan Y Z, Yu Y, et al. Silicate Bulletin, 2008, 27(2), 345(in Chinese). 曾华瑞, 阮玉忠, 于岩, 等. 硅酸盐通报, 2008, 27(2), 345. |
|
|
|