INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Mechanical Properties and Strength Index Conversion of Steel Fiber Geopolymeric Recycled Concrete |
DONG Shuo1,2, ZHENG Lisen2, SHI Fengwei1,2,*, WANG Lai1,2, LIU Zhe3
|
1 Shandong Key Laboratory of Civil Engineering Disaster Prevention and Mitigation, Shandong University of Science and Technology, Qingdao 266590, Shandong, China 2 School of Civil Engineering and Architecture, Shandong University of Science and Technology, Qingdao 266590, Shandong, China 3 School of Civil Engineering, Shandong Jianzhu University, Jinan 250101, China |
|
|
Abstract A total of 240 steel fiber geopolymeric recycled concrete (SFGRC) specimens were prepared, with recycled coarse aggregate replacement ratio (0%—100%) and steel fiber volume fraction (0%—1.5%) as the primary variables, and these specimens were tested for basic mechanical properties and observed for microstructural morphology. The results indicated that replacing natural aggregate with recycled coarse aggregate reduced all fundamental mechanical properties of the concrete. For SFGRC specimen with a 100% recycled aggregate replacement and 1.0% steel fiber content, its cube compressive strength, axial compressive strength, elastic modulus, splitting tensile strength, and flexural strength decreased by 15%, 9%, 25%, 15%, and 15%, respectively, while its peak strain increased by 24%. Except for elastic modulus, incorporating steel fibers significantly improved the mechanical properties of the concrete, and its failure exhibited a ductile mode. When the recycled aggregate replacement ratio reached 100% with 1.5% steel fiber content, the cube and axial compressive strength, peak strain, splitting tensile strength, and flexural strength of the specimen increased by 15%, 9%, 10%, 65%, and 39%, respectively. Based on experimental results, a series of calculation formula and conversion relationship for the fundamental strength indices of SFGRC were proposed, accounting for the effects of recycled aggregate replacement and steel fiber content.
|
Published: 10 April 2025
Online: 2025-04-10
|
|
|
|
1 Le H B, Bui Q B. Construction and Building Materials, 2020, 257, 119522. 2 Xiao J Z, Tang Y X, Zhang K J, et al. Engineering Mechanics, 2024, 41(2), 43(in Chinese). 肖建庄, 唐宇翔, 张凯建, 等. 工程力学, 2024, 41(2), 43. 3 Hai R, Cui L, Zhai S T, et al. Materials Reports, DOI: 10.11896/cldb.24050154 (in Chinese). 海然, 崔力, 翟胜田, 等. 材料导报, DOI: 10.11896/cldb.24050154. 4 Thomas C, Brito J, Cimentada A, et al. Construction and Building Materials, 2020, 245, 118843. 5 Kim J. Construction and Building Materials, 2022, 328, 127071. 6 Duan Z H, Deng Q, Xiao J Z, et al. Journal of Building Materials, 2022, 25(11), 1136(in Chinese). 段珍华, 邓琪, 肖建庄, 等. 建筑材料学报, 2022, 25(11), 1136. 7 Nuaklong P, Sata V, Chindaprasirt P. Journal of Cleaner Production, 2016, 112, 2300. 8 Ren X, Zhang L Y. Construction and Building Materials, 2018, 167, 749. 9 Singh N B, Middendorf B. Construction and Building Materials, 2020, 237, 117455. 10 Ding Z Y, Su Q, Li M Z, et al. Journal of Building Materials, 2023, 26(1), 61(in Chinese) . 丁兆洋, 苏群, 李明泽, 等. 建筑材料学报, 2023, 26(1), 61. 11 Dai J X, Shi X S, Wang Q Y, et al. Materials Reports, 2021, 35(9), 9077(in Chinese) . 代金芯, 石宵爽, 王清远, 等. 材料导报, 2021, 35(9), 9077. 12 Tang Z, Hu Y, Tam V W Y, et al. Cement and Concrete Composites, 2019, 104, 103375. 13 Xie J H, Wang J J, Zhang B X, et al. Construction and Building Materials, 2019, 204, 384. 14 Ding Z Y, Zhou J H, Su Q, et al. Journal of Shenyang Jianzhu University(Natural Science), 2021, 37(1), 138(in Chinese). 丁兆洋, 周静海, 苏群 等. 沈阳建筑大学学报(自然科学版), 2021, 37(1), 138. 15 Zhao Y W. Study on basic mechanical properties of geopolymer recycled concrete under compression loading. Master's Thesis, Harbin Institute of Technology, China, 2018(in Chinese) . 赵岩伟. 地聚物再生混凝土受压基本力学性能研究. 硕士学位论文, 哈尔滨工业大学, 2018. 16 Yost J R, Radlinska A, Ernst S, et al. Materials and Structures, 2012, 46, 435. 17 Sarker P K, Haque R, Ramgolam K V. Materials & Design, 2013, 44, 580. 18 Gao X, Yu Q L, Yu R, et al. Materials and Structures, 2017, 50(165), 1. 19 Zhao Q H, Dong S, Xie M. Journal of Building Structures, 2022, 43(11), 255(in Chinese). 赵秋红, 董硕, 谢萌. 建筑结构学报, 2022, 43(11), 255. 20 Li Z J, Liu X, Zhao C Y, et al. Acta Materiae Compositae Sinica, 2024, 41(10), 5516(in Chinese). 李振军, 刘喜, 赵辰宇, 等. 复合材料学报, 2024, 41(10), 5516. 21 Xia D T, Chang W J, Li B, et al. Acta Materiae Compositae Sinica, DOI:10.13801/j.cnki.fhclxb.20240723.001 (in Chinese). 夏冬桃, 常闻捷, 李彪, 等. 复合材料学报, DOI:10.13801/j.cnki.fhclxb.20240723.001. 22 Zhang P, Wang J, Li Q, et al. Science and Engineering of Composite Materials, 2021, 28(1), 299. 23 Kumar S S, Pazhani K C, Ravisankar K. Current Science, 2017, 113(1), 116. 24 Farhan N A, Sheikh M N, Hadi M N S. ACI Materials Journal, 2020, 117(3), 29. 25 Ministry of Housing and Urban-Rural Development of the People's Republic of China. Recycled coarse aggregate for concrete, GB/T 25177—2010, China Standards Press, China, 2019, pp.4(in Chinese). 中华人民共和国住房和城乡建设部. 混凝土用再生粗骨料, GB/T 25177—2010, 中国标准出版社, 2019, pp.4. 26 Sun B B, Sun Y B, Ye G, et al. Cement and Concrete Composites, 2022, 126, 104368. 27 Ferreira L, De brito J, Barra M. Magazine of Concrete Research, 2011, 63(8), 617. 28 Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of concrete structures, GB 50010—2010, China Architecture & Building Press, China, 2010, pp.8(in Chinese). 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准, GB 50010—2010, 中国建筑工业出版社, 2019, pp.8. 29 China Engineering Construction Industry Association. Standard test methods for fiber reinforced concrete, CECS 13:2009, China Planning Press, China, 2010, pp.44(in Chinese). 中国工程建设行业协会. 纤维混凝土试验方法标准, CECS 13:2009, 中国计划出版社, 2010, pp.44. 30 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. General guide of quantitative analysis by EPMA, GB/T 15074—2008, Standards Press of China, China, 2009, pp.4(in Chinese). 中华人民共和国国家质量监督检验检疫总局. 电子探针定量分析方法通则, GB/T 15074—2008, 中国标准出版社, 2009, pp.4. |
|
|
|