| METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
| A Review of CBRAM Development for Memory and Neuromorphic Computing Applications |
| YANG Han1,2, LIU Guozhu1,2,3,*, WEI Yidan1,2, ZHAO Wei1,2,3, WEI Yingqiang1,2, ZHOU Ying1,2, SUI Zhiyuan1,2, LIU Meijie1,2, YOU Xingyu1,2, WEI Jinghe1,2,3
|
1 The 58th Research Institute of China Electronics Technology Group Corporation, Wuxi 214035, Jiangsu, China 2 National Key Laboratory of Integrated Circuits and Microsystems, Wuxi 214035, Jiangsu, China 3 Key Laboratory of Aerospace Integrated Circuits and Microsystem, Ministry of Industry and Information Technology, Nanjing 211106, China |
|
|
|
|
Abstract As an emerging non-volatile memory technology, conductive bridge random access memory (CBRAM) has attracted extensive attention in the semiconductor memory field in recent years. With the rapid development of applications such as the Internet of Things (IoT), wearable devices, and mobile computing, higher requirements have been imposed on the performance, power consumption, size, and cost of memories. Consequently, new-generation memory technologies like CBRAM have emerged. This paper elaborates on the basic concepts and structures of CBRAM; it conducts a detailed analysis of the formation mechanisms of conductive filaments in different dielectric layers; it compares the electrical performance differences of devices fabricated with different electrode materials and dielectric layer materials; it introduces the applications of CBRAM in the fields of memory and neuromorphic computing; and it summarizes the challenges faced by CBRAMs and provides suggestions for their further development.
|
|
Published: 10 November 2025
Online: 2025-11-10
|
|
|
|
|
1 Lee M J, Lee C B, Lee D, et al. Nature Materials, 2011, 10(8), 625. 2 Cheng C H, Tsai C Y, Chin A, et al. In: 2010 International Electron Devices Meeting. San Francisco, 2010, pp.19. 4. 1. 3 Torrezan A C, Strachan J P, Medeiros-Ribeiro G, et al. Nanotechnology, 2011, 22(48), 485203. 4 Waser R, Dittmann R, Staikov G, et al. Advanced Materials, 2009, 21(25-26), 2632. 5 Wedig A, Luebben M, Cho D Y, et al. Nature Nanotechnology, 2016, 11(1), 67. 6 Yan X B, Qin C Y, Lu C, et al. ACS Applied Materials & Interfaces, 2019, 11(51), 48029. 7 Waser R. Microelectronic Engineering, 2009, 86(7-9), 1925. 8 Yoon J H, Song S J, Yoo I H, et al. Advanced Functional Materials, 2014, 24(32), 5086. 9 Pan R, Li J, Zhuge F, et al. Applied Physics Letters, 2016, 108(1), 013504. 10 Hu L, Yang J, Wang J, et al. Advanced Functional Materials, 2021, 31(4), 2005582. 11 Yang J, Hu L, Shen L, et al. Fundamental Research, 2024, 4(1), 158. 12 Hu L, Shao J, Wang J, et al. Applied Physics Reviews, 2024, 11(1), 011411. 13 Valov I, Waser R, Jameson J R, et al. Nanotechnology, 2011, 22(25), 254003. 14 Yuan J H. Theory research on the materials and resistance mechanism of memristor. Master’s Thesis, Huazhong University of Science and Technology, China, 2020 (in Chinese). 袁俊辉. 忆阻器材料与阻变机理的理论研究. 硕士学位论文, 华中科技大学, 2020. 15 Imanishi Y, Kida S, Nakaoka T. AIP Advances, 2016, 6(7), 075003. 16 Zhuge F, Li K, Fu B, et al. AIP Advances, 2015, 5(5), 057125. 17 Arita M, Ohno Y, Takahashi Y. Physica Status Solidi A, 2016, 213(2), 306. 18 Belmonte A, Celano U, Redolfi A, et al. IEEE Transactions on Electron Devices, 2015, 62(6), 2007. 19 Tsuruoka T, Valov I, Tappertzhofen S, et al. Advanced Functional Materials, 2015, 25(40), 6374. 20 Peng S, Zhuge F, Chen X, et al. Applied Physics Letters, 2012, 100(7), 072101. 21 Jeon Y R, Akinwande D, Choi C. Nanoscale Horizons, 2024, 9(5), 853. 22 Liu Q, Sun J, Lv H, et al. Advanced Materials, 2012, 24(14), 1844. 23 Nail C, Molas G, Blaise P, et al. IEEE Transactions on Electron Devices, 2017, 64(11), 4479. 24 Yang Y, Gao P, Gaba S, et al. Nature Communications, 2012, 3, 732. 25 Tian X, Yang S, Zeng M, et al. Advanced Materials, 2014, 26(22), 3649. 26 Yang Y, Gao P, Li L, et al. Nature Communications, 2014, 5, 4232. 27 Li Y. Theoretical investigation of the filament morphology in conductive bridge random access memories, Master’s Thesis, Huazhong University of Science and Technology, China, 2019 (in Chinese). 李云. CBRAM中导电丝形成机理的研究. 硕士学位论文, 华中科技大学, 2020. 28 Deng Y F, Wei Z J, Wang D. Computer Engineering & Science, 2022, 44(1), 36 (in Chinese). 邓亚峰, 魏子健, 王栋. 计算机工程与科学, 2022, 44(1), 36. 29 Abbas H, Li J, Ang D S. Micromachines, 2022, 13(5), 725. 30 Strukov D B, Snider G S, Stewart D R, et al. Nature, 2008, 453(7191), 80. 31 Kim D W, Kwon K H, Kim H J, et al. In: Electrochemical Society Meeting Abstracts 235. Dallas, 2019, pp. 1169. 32 Ryu J H, Kim S. Chaos, Solitons & Fractals, 2020, 140, 110236. 33 Apsangi P, Barnaby H, Kozicki M, et al. Neuromorphic Computing and Engineering, 2022, 2(2), 021002. 34 Ye F, Kiani F, Huang Y, et al. Advanced Materials, 2023, 35(37), 2204778. 35 Maudet F, Hammud A, Wollgarten M, et al. Nanotechnology, 2023, 34(24), 245203. 36 Cao H, Ren H. Applied Physics Letters, 2022, 120(13), 133502. 37 Fujii S, Incorvia J A C, Yuan F, et al. IEEE Electron Device Letters, 2017, 39(1), 23. 38 Liu Y, Gao J, Wu F, et al. IEEE Transactions on Electron Devices, 2021, 68(5), 2568. 39 Hsu C L, Saleem A, Singh A, et al. IEEE Transactions on Electron Devices, 2021, 68(11), 5578. 40 Yuan H, Wan T, Bai H. Electronics, 2023, 12(6), 1471. 41 Sun Y, Song C, Yin S, et al. ACS Applied Materials & Interfaces, 2020, 12(26), 29481. 42 Apsangi P, Chamele N, Bamaby H J, et al. IEEE Transactions on Nuclear Science, 2023, 70(12), 2572. 43 Ali A, Abbas H, Hussain M, et al. Applied Materials Today, 2022, 29, 101554. 44 Ali A, Abbas H, Li J, et al. Applied Physics Letters, 2023, 122(20), 203503. 45 Zhao X, Liu S, Niu J, et al. Small, 2017, 13(35), 1603948. 46 Xie J. Two dimensional materials based memristors for in-memory computing and neuromorphic computing. Ph. D. Thesis, Arizona State University, USA, 2023. 47 Jeon Y R, Choi J, Kwon J D, et al. ACS Applied Materials & Interfaces, 2021, 13(8), 10161. 48 Desai T R, Kundale S S, Dongale T D, et al. ACS Applied Bio Materials, 2023, 6(5), 1763. 49 Sakellaropoulos D, Bousoulas P, Papakonstantinopoulos C, et al. IEEE Transactions on Electron Devices, 2021, 68(4), 1598. 50 Chen W, Fang R, Balaban M B, et al. Nanotechnology, 2016, 27(25), 255202. 51 Kumar D, Aluguri R, Chand U, et al. Nanotechnology, 2018, 29(12), 125202. 52 Sakellaropoulos D, Bousoulas P, Papakonstantinopoulos C, et al. IEEE Electron Device Letters, 2020, 41(7), 1013. 53 Lu B, Du J, Lu J, et al. ACS Materials Letters, 2023, 5(5), 1350. 54 Jin M M, Cheng L, Li Y, et al. Nanotechnology, 2018, 29(38), 385203. 55 Kwon O, Shin J, Chung D, et al. Ceramics International, 2022, 48(20), 30482. 56 Mamberti R, Benevent E, Bocquet M, et al. IEEE Journal on Flexible Electronics, DOI: 10. 1109/JFLEX. 2024. 3505072. 57 Ghafoor F, Kim H, Ghafoor B, et al. Journal of Colloid and Interface Science, 2024, 659, 1. 58 Shi Y, Nguyen L, Oh S, et al. Nature Communications, 2018, 9(1), 5312. 59 Sakamoto T, Sunamura H, Kawaura H, et al. Applied Physics Letters, 2003, 82(18), 3032. 60 Tada M, Sakamoto T, Okamoto K, et al. In: 2010 International Electron Devices Meeting. San Francisco, 2010, pp. 16. 5. 1. 61 Gonzalez-Velo Y, Mahmud A, Chen W, et al. IEEE Transactions on Nuclear Science, 2016, 63(4), 2145. 62 https://www. eenewseurope. com/en/microsemi-named-as-reram-licensee/. 63 https://www. skywatertechnology. com/weebit-and-skywater-announce-agreement-to-take-reram-technology-to-volume-production/. 64 https://www. innostar-semi. com/index. php?s=news&c=show&id=25. 65 https://www. weebit-nano. com/news/press-releases/weebit-nano-receives-wafers-manufactured-in-globalfoundries-22fdx-process/. 66 Chen W, Barnaby H J, Kozicki M N, et al. IEEE Transactions on Nuclear Science, 2015, 62(6), 2404. 67 Wu F, Si S, Cao P, et al. Advanced Electronic Materials, 2019, 5(4), 1800747. 68 Khot A C, Dongale T D, Nirmal K A, et al. ACS Applied Materials & Interfaces, 2022, 14(8), 10546. 69 Hyun G, Alimkhanuly B, Seo D, et al. Small, 2024, 20, 2310943. 70 Guo W B, Wang Z Q, Wu Z H, et al. Electronics & Packaging, 2024, 24(4), 40401 (in Chinese). 郭文斌, 汪泽清, 吴祖恒, 等. 电子与封装, 2024, 24(4), 40401. 71 Cho H, Kim S. Nanomaterials, 2020, 10(9), 1709. 72 Wang J, Cao G, Sun K, et al. Nanoscale, 2022, 14(4), 1318. 73 Wu Y, Cai F, Thomas L, et al. In: 2022 International Electron Devices Meeting. San Francisco, 2022, pp. 18. 4. 1. 74 Shi Y, Oh S, Park J, et al. Neuromorphic Computing and Engineering, 2023, 3(3), 034007. 75 Sharma D, Rath S P, Kundu B, et al. Nature, 2024, 633(8030), 560. 76 Chung C, Choi C. Materials Science in Semiconductor Processing, 2024, 179, 108471. |
|
|
|