| INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
| Preparation of Transition Metal Nitrides by Arc Plasma and Their Applications |
| CHEN Jiale1,2,3, ZHANG Da1,2,3,*, XIE Zhipeng1,2,3, LIU Yichang1,2,3, YANG Bin1,2,3, LIANG Feng1,2,3,*
|
1 National Engineering Research Center for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093, China 2 Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China 3 School of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China |
|
|
|
|
Abstract Transition metal nitrides are widely used in catalysis, energy storage, electronic devices, and biomedicine due to their unique physical and chemical properties, such as high hardness, high melting points, excellent conductivity, and chemical stability. Arc plasma, an efficient and environmentally friendly preparation technology, has garnered significant attention in the field of transition metal nitride synthesis due to its high reaction temperature, excellent product purity, enhanced reactivity, and strong controllability. This paper introduces arc plasma and examines its impact on the preparation process, summarizing the current applications of transition metal nitrides in coatings, catalysis, magnetic refrigeration, and superconductivity. In the paper, the development trends of arc plasma in transition metal nitride synthesis are also discussed, highlighting the need for future research to integrate advanced characterization techniques with simulation and computational methods to gain a deeper understanding of material growth mechanisms. Future research should combine advanced characterization techniques and simulation calculation methods to deeply understand the growth mechanism of materials, improve the purity and consistency of materials, reduce energy consumption and production costs, and realize the precise control of plasma on the microstructure and properties of transition metal nitrides.
|
|
Published: 10 November 2025
Online: 2025-11-10
|
|
|
|
|
1 Ningthoujam R S, Gajbhiye N S. Progress in Materials Science, 2015, 70, 50. 2 Wang H, Li J, Li K, et al. Chemical Society Reviews, 2021, 50, 1354. 3 Bi W T, Hu Z T, Li X G, et al. Nano Research, 2015, 8, 193. 4 Kim H H. Plasma Processes and Polymers, 2004, 1, 91. 5 Lieberman M A, Lichtenberg A J. Principles of plasma discharges and materials processing, Lieberman M A, Lichtenberg A J, ed. , Wiley-Interscience, Hoboken, N. J. , 2005, pp. 1. 6 Mahoney W, Andres R P. Materials Science and Engineering: A, 1995, 204, 160. 7 Kruis F E, Kusters K A, Pratsinis S E, et al. Aerosol Science and Technology, 1993, 19, 514. 8 Stein M, Egenolf Y, Dierks T, et al. International Journal of Psychophysiology, 2013, 89, 1. 9 Kiesler D, Bastuck T, Theissmann R, et al. Journal of Nanoparticle Research, 2015, 17, 152. 10 Saito G, Akiyama T. Journal of Nanomaterials, 2015, 2015, 123696. 11 Chen Q, Li J S, Li Y F. Journal of Physics D: Applied Physics, 2015, 48, 424005. 12 Guo Y M, Okazaki T. Japanese Journal of Applied Physics, 2004, 43, 720. 13 Shen L H, Cui Q L, Zhang J, et al. Chinese Physics Letters, 2005, 22, 3192. 14 Lei W W, Liu D, Shen L H, et al. Journal of Crystal Growth, 2007, 306, 413. 15 Lei W W, Liu D, Zhang J, et al. Journal of Alloys and Compounds, 2008, 459, 298. 16 Aithal S M, Subramaniam V V, Pagan J, et al. Journal of Applied Physics, 1998, 84, 3506. 17 Shinde K P, Jang S H, Kim J W, et al. Dalton Transactions, 2015, 44, 20386. 18 Yugeswaran S, Ananthapadmanabhan P V, Kumaresan L, et al. Ceramics International, 2018, 44, 14789. 19 Fu Q, Kokalj D, Stangier D, et al. Advanced Powder Technology, 2020, 31, 4119. 20 Chen J H, Lu G H, Zhu L Y, et al. Journal of Nanoparticle Research, 2007, 9, 203. 21 Thampi V V A, Bendavid A, Subramanian B. Ceramics International, 2016, 42, 9940. 22 Kumaresan L, Shanmugavelayutham G, Saravanan P. Applied Physics A, 2022, 128, 1073. 23 Kumaresan L, Selvakumar C, Shanmugavelayutham G, et al. New Journal of Chemistry, 2023, 47, 17080. 24 Cong R D, Liu X Y, Cui H, et al. CrystEngComm, 2014, 16, 3977. 25 Zhang D, Zhang K W, Xie Z P, et al. Materials, 2023, 16, 7469. 26 Shen L H, Wang N. Journal of Nanomaterials, 2011, 2011, 781935. 27 Park Y S, Kodama S, Sekiguchi H. Nanomaterials (Basel), 2021, 11, 2214. 28 Belmonte T, Kabbara H, Noël C, et al. Plasma Sources Science and Technology, 2018, 27, 074004. 29 Ma Y Z, Cui Q L, Shen L H, et al. Journal of Applied Physics, 2007, 102, 013525. 30 Barshilia H C, Surya P M, Poojari A, et al. Thin Solid Films, 2004, 460, 133. 31 Escobar C A, Caicedo J C, Aperador W. Journal of Physics and Chemistry of Solids, 2014, 75, 23. 32 Harrer S, Ahmed S, Afzali-Ardakani A, et al. Langmuir, 2010, 26, 19191. 33 Hazel B, Rigney J, Gorman M, et al. In: 11th International Symposium on Superalloys. Champion, PA, 2008, pp. 753. 34 Alling B, Högberg H, Armiento R, et al. Scientific Reports, 2015, 5, 9888. 35 Qiu Y, Zhang S, Lee J W, et al. Applied Surface Science, 2013, 279, 189. 36 Qiu Y, Zhang S, Lee J W, et al. Journal of Alloys and Compounds, 2015, 618, 132. 37 Qiu Y, Zhang S, Li B, et al. Surface and Coatings Technology, 2013, 231, 357. 38 Wang Y, Qian X D, Liew J R, et al. International Journal of Impact Engineering, 2014, 72, 1. 39 Wang Y X, Zhang S, Lee J W, et al. Surface and Coatings Technology, 2013, 231, 346. 40 Gao J, Zhao Y, Gu Z Q, et al. Ceramics International, 2017, 43, 8517. 41 Greer A L, Rutherford K L, Hutchings M. International Materials Reviews, 2002, 47, 87. 42 Kapsa P. Advanced Engineering Materials, 2001, 3, 531. 43 Rodríguez R J, García J A, Medrano A, et al. Vacuum, 2002, 67, 559. 44 Santecchia E, Hamouda A M S, Musharavati F, et al. Ceramics International, 2015, 41, 10349. 45 Polcar T, Parreira N M G, Cavaleiro A. Wear, 2008, 265, 319. 46 Castanho J, Cavaleiro A, Vieira M T. Vacuum, 1994, 45, 1051. 47 Cavaleiro A, Trindade B, Vieira M T. Surface and Coatings Technology, 2003, 174, 68. 48 Mishra S K, Kumar V, Tiwari S K, et al. Thin Solid Films, 2016, 619, 202. 49 Hołyńska M, Tighe A, Semprimoschnig C. Advanced Materials Interfaces, 2018, 5, 1701644. 50 Fu Y Q, Zhu X D, Tang B, et al. Wear, 1998, 217, 159. 51 Fu Y, Lam L N, Batchelor A W, et al. Materials Science and Enginee-ring: A, 1999, 265, 224. 52 Zerr A, Riedel R, Sekine T, et al. Advanced Materials, 2006, 18, 2933. 53 Tsetseris L, Kalfagiannis N, Logothetidis S, et al. Physical Review B, 2007, 76, 224107. 54 Bourguille J, Brinza O, Zerr A. Ceramics International, 2016, 42, 982. 55 Zerr A, Miehe G, Riedel R. Nature Materials, 2003, 2, 185. 56 Soldán J, Musil J, Zeman P. Plasma Processes and Polymers, 2007, 4, S6. 57 Kaul A B, Whiteley S R, Van Duzer T, et al. Applied Physics Letters, 2001, 78, 99. 58 Tsetseris L, Kalfagiannis N, Logothetidis S, et al. Physical Review Letters, 2007, 99, 125503. 59 Fu Y Q, Zhu X D, Tang B, et al. Materials Letters, 1999, 40, 192. 60 Lévy F, Hones P, Schmid P E, et al. Surface and Coatings Technology, 1999, 120, 284. 61 Navinsek B, Seal S. Journal of Metals, 2001, 53, 51. 62 Naik G V, Shalaev V M, Boltasseva A. Advanced Materials, 2013, 25, 3264. 63 Guler U, Shalaev V M, Boltasseva A. Materials Today, 2015, 18, 227. 64 Naik G V, Kim J, Boltasseva A. Optical Materials Express, 2011, 1, 1090. 65 Hu C Q, Liu J, Wang J B, et al. Light: Science & Applications, 2018, 7, 17175. 66 Li S, Xi C, Jin Y Z, et al. ACS Energy Letters, 2019, 4, 1823. 67 Lu X Y, Zhao C. Nature Communications, 2015, 6, 6616. 68 Ham D J, Lee J S. Energies, 2009, 2, 873. 69 Xu K, Chen P Z, Li X L, et al. Journal of the American Chemical Society, 2015, 137, 4119. 70 Jasinski R. Nature, 1964, 201, 1212. 71 Zheng Y Y, Zhang J, Zhan H T, et al. Electrochemistry Communications, 2018, 91, 31. 72 Pecharsky V K, Gschneidner Jr K A. Journal of Magnetism and Magnetic Materials, 1999, 200, 44. 73 Shen B G, Sun J R, Hu F X, et al. Advanced Materials, 2009, 21, 4545. 74 Phan M H, Yu S C. Journal of Magnetism and Magnetic Materials, 2007, 308, 325. 75 Warburg E. Annalen der Physik, 1881, 249, 141. 76 Gschneidner K A, Pecharsky V K, Tsokol A O. Reports on Progress in Physics, 2005, 68, 1479. 77 Gao R L, Fu C L, Cui L, et al. Physica B: Condensed Matter, 2015, 457, 36. 78 Yamamoto T A, Nakagawa T, Sako K, et al. Journal of Alloys and Compounds, 2004, 376, 17. 79 Nakano T, Masuyama S, Hirayama Y, et al. Applied Physics Letters, 2012, 101, 251908. 80 Nakagawa T, Sako K, Arakawa T, et al. Journal of Alloys and Compounds, 2006, 408, 187. 81 Banerjee B K. Physics Letters, 1964, 12, 16. 82 Chen X J, Struzhkin V V, Wu Z G, et al. Proceedings of the National Academy of Sciences, 2005, 102, 3198. 83 Deis D W, Gavaler J R, Hulm J K, et al. Journal of Applied Physics, 1969, 40, 2153. 84 Kasumov A Y, Deblock R, Kociak M, et al. Science, 1999, 284, 1508. 85 Zou Y T, Qi X T, Zhang C, et al. Scientific Reports, 2016, 6, 22330. 86 Gao D Q, Zhang J Y, Wang T T, et al. Journal of Materials Chemistry A, 2016, 4, 17363. 87 Kim D, Ahn J, Sinha B, et al. International Journal of Hydrogen Energy, 2015, 40, 11465. 88 Liao Z W, Yi X W, You J Y, et al. Physical Review B, 2023, 108, 014501. |
|
|
|