| INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
| Establishment and Evaluation of Constitutive Model of High Modulus Asphalt at Low Temperature Based on BBR Test |
| SHA Dong1,2,*, LI Gen1, WANG Fang1, TANG Min3, LIU Yiding2
|
1 School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China 2 Ningxia Highway Survey and Design Institute Limited Liability Company, Yinchuan 750001, China 3 Ningxia Highway Management Center, Yinchuan 750002, China |
|
|
|
|
Abstract Four kinds of typical high modulus asphalts were selected for the bending beam rheology (BBR) test, and their creep characterization para-meters at low temperatures were obtained. Then, three viscoelastic constitutive models were used to explore the constitutive relationships of several high modulus asphalts at low temperatures, respectively. Finally, the constitutive models applicable to high modulus asphalts at low temperatures were further evaluated by the gray relation analysis (GRA) model. The results show that the low-temperature limit of crumb rubber composite modified high modulus asphalt (CRA) and high modulus agent modified asphalt (HIA) is -12 ℃, while that of high-content SBS modified asphalt (SBA) and high modulus asphalt prepared with 35# hard asphalt (HGA) is -6 ℃. Compared with the three-parameter solid (TPS) model and the four-parameter solid (FPS) model, the Burgers model has a higher fitting accuracy, a more significant regularity, and a lower vo-latility of the model parameters when evaluating the low temperature performance of high modulus asphalt. Moreover, through the GRA evaluation results, it's found that the Burgers model is more suitable for characterizing the creep behavior of high modulus asphalt at low temperatures than TPS model and the FPS model.
|
|
Published: 25 November 2025
Online: 2025-11-14
|
|
|
|
|
1 Guo N S, Chu Z Y, Fang C Z, et al. Journal of Highway and Transport, 2023, 36(12), 77(in Chinese). 郭乃胜, 褚召阳, 房辰泽, 等. 中国公路学报, 2023, 36(12), 77. 2 Li B, Zhang R. Highway, 2023, 68(7), 246(in Chinese). 李博, 张瑞. 公路, 2023, 68(7), 246. 3 Wang C, Song L H, Sun Y G, et al. Materials Reports, 2024, 38(9), 73(in Chinese). 王超, 宋立昊, 孙彦广, 等. 材料导报, 2024, 38(9), 73. 4 Wang C, Gong G Y, Chen Y F. China Civil Engineering Journal, 2023, 56(2), 110(in Chinese). 王超, 宫官雨, 陈乙方. 土木工程学报, 2023, 56(2), 110. 5 Yang Y, Gong Y, Zheng Y, et al. Journal of Highway and Transportation Research and Development, 2022, 39(12), 27(in Chinese). 杨毅, 龚演, 郑俞, 等. 公路交通科技, 2022, 39(12), 27. 6 Li Q F, Wang S M. Highway Engineering, 2017, 42(3), 205(in Chinese). 李青芳, 王淑妹. 公路工程, 2017, 42(3), 205. 7 Li H, Guo R X, Yan Y. Chemical Industry and Engineering Progress, 2022, 41(S1), 351(in Chinese). 李昊, 郭荣鑫, 晏永. 化工进展, 2022, 41(S1), 351. 8 Zhang Z Q, Zheng W Z, Gui Z J, et al. Journal of Materials Science & Engineering, 2023, 41(1), 551(in Chinese). 张争奇, 郑文章, 桂增俭, 等. 材料科学与工程学报, 2023, 41(1), 551. 9 Wang R L, Yuan G Q. Journal of Materials Science and Engineering, 2022, 40(2), 255(in Chinese). 王瑞林, 袁光权. 材料科学与工程学报, 2022, 40(2), 255. 10 You Z, Mills-Beale J, Fini E, et al. Journal of Materials in Civil Engineering, 2011, 23(11), 1569. 11 Huang W D, Yan C Q, Liu S P, et al. Journal of Building Materials, 2016, 19(6), 1088(in Chinese). 黄卫东, 颜川奇, 刘少鹏, 等. 建筑材料学报, 2016, 19(6), 1088. 12 Hajikarimi P, Aflaki S, Sadat Hosseini A. Construction and Building Materials, 2013, 49, 682. 13 Walubita L F, Fuentes L, Tanvir H, et al. Journal of Materials in Civil Engineering, 2021, 33(9). 14 Yu J D, Li K, Pan Y Q, et al. Petroleum Asphalt, 2024, 38 (4), 18(in Chinese). 郁嘉栋, 李款, 潘友强, 等. 石油沥青, 2024, 38 (4), 18. 15 Huang Q, Liu A, Yan E H. Highway, 2022, 67(3), 42(in Chinese). 黄琪, 刘安, 严二虎. 公路, 2022, 67(3), 42. 16 Wei Q, Zhao J Z, Wei X L, et al. China Building Materials Science & Technology, 2024, 33 (2), 70(in Chinese). 魏强, 赵静卓, 魏小龙, 等. 中国建材科技, 2024, 33(2), 70. 17 Zhang X, Han C, Yang J, et al. Materials, 2021, 14(24), 7727. 18 Mi S Z, Li Y X, Zhang H W. Advances in Materials Science and Engineering, 2022, 2022(1), 2374241. 19 Xu J Q, Yang E H, Luo H Y, et al. Journal of Building Materials, 2020, 23(1), 70(in Chinese). 徐加秋, 阳恩慧, 罗浩原, 等. 建筑材料学报, 2020, 23(1), 70. 20 Li H, Dong B, Zhao D, et al. Arabian Journal for Science and Engineering, 2019, 44(5), 5043. 21 Tang P, Mo L, Pan C, et al. Construction and Building Materials, 2018, 161, 175. 22 Zou G, Zhuo R, Sun X, et al. International Journal of Pavement Engineering, 2020, 23(5), 1584. 23 Yang X, Liu G, Rong H, et al. Construction and Building Materials, 2022, 347, 128599. 24 Cong P, Xun P, Xing M, et al. Construction and Building Materials, 2013, 40, 632. 25 Ding X, Ma T, Zhang W, et al. Construction and Building Materials, 2017, 157, 975. 26 Tan Y Q, Fu Y K, Ji L, et al. Journal of Harbin Institute of Technology, 2016, 48(3), 66(in Chinese). 谭忆秋, 符永康, 纪伦, 等. 哈尔滨工业大学学报, 2016, 48(3), 66. 27 Tang C, Wang D Y, Hu C, et al. Journal of Building Materials, 2022, 25(9), 938(in Chinese). 唐成, 王端宜, 胡聪, 等. 建筑材料学报, 2022, 25(9), 938. 28 Yang L J, Long N Q, Wang L, et al. Journal of Building Materials, 2022, 25(12), 1313(in Chinese). 杨丽娟, 龙念泉, 王岚, 等. 建筑材料学报, 2022, 25(12), 1313. 29 Ye Y, Yang X H, Chen C Y. Journal of Huazhong University of Science and Technology(Nature Science Edition), 2009, 37(3), 116(in Chinese). 叶永, 杨新华, 陈传尧. 华中科技大学学报(自然科学版), 2009, 37(3), 116. 30 Xu J W, Ye Y, Xie X. Journal of China Three Gorges University(Natural Sciences), 2022, 44(2), 38(in Chinese). 徐家伟, 叶永, 谢旋. 三峡大学学报(自然科学版), 2022, 44(2), 38. 31 He D P, Pan Z Q, Wang H G, et al. New Chemical Materials, 2022, 50(1), 187(in Chinese). 何东坡, 潘志强, 王宏光, 等. 化工新型材料, 2022, 50(1), 187. |
|
|
|