| POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
| Research Progress on Stimuli-responsive Hydrogels Based on Cellulose Nanocrystals |
| ZHU Qiuyue1, CUI Shuo1, XU Tao1, ZHANG Zhengjian1,2,3,*
|
1 College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China 2 State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China 3 Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China |
|
|
|
|
Abstract Cellulose nanocrystals (CNC) not only possess characteristics such as high strength, high specific surface area, ease of surface modification, and biocompatibility, but also exhibit structural color through self-assembly. They play a significant role in the design and fabrication of stimuli-responsive hydrogels. CNC-based stimuli-responsive hydrogels exhibit responsiveness to external environmental stimuli such as temperature, pH, mechanical force, solvents, and ionic strength, holding immense potential in fields such as environmental monitoring, drug delivery, information encryption, and flexible sensors. This paper first introduces the preparation methods of CNC-based stimuli-responsive hydrogels. It then focuses on the single or multiple stimuli-responsive behaviors of CNC-based stimuli-responsive hydrogels and the research progress in their applications in various fields. It finally summarizes the challenges faced by CNC-based stimuli-responsive hydrogels in research and their application prospects.
|
|
Published: 25 November 2025
Online: 2025-11-14
|
|
|
|
|
1 Koetting M C, Peters J T, Steichen S D, et al. Materials Science and Engineering R, 2015, 93, 1. 2 Deng Y, Xi J, Meng L, et al. European Polymer Journal, 2022, 180, 111591. 3 Zhang D, Ren B, Zhang Y, et al. Journal of Materials Chemistry B, 2020, 8(16), 3171. 4 Dreiss C A. Current Opinion in Colloid & Interface Science, 2020, 48, 1. 5 Mu R, Liu B, Chen X, et al. Environmental Technology & Innovation, 2020, 20, 101107. 6 Lv P, Lu X, Wang L, et al. Advanced Functional Materials, 2021, 31(45), 2104991. 7 De France K J, Hoare T, Cranston E D. Chemistry of Materials, 2017, 29(11), 4609. 8 Calvino C, Macke N, Kato R, et al. Progress in Polymer Science, 2020, 103, 101221. 9 Neumann M, di Marco G, Iudin D, et al. Macromolecules, 2023, 56(21), 8377. 10 Ding C X, Pan M Z. Journal of Materials Engineering, 2019, 47(1), 32. (in Chinese). 丁春香, 潘明珠. 材料工程, 2019, 47(1), 32. 11 Dogan-Guner E M, Schueneman G T, Shofner M L, et al. Cellulose, 2021, 28(17), 10875. 12 Song Z C, Xu Y X, Ma C C, et al. New Chemical Materials, 2024, 1006-3536, 1. (in Chinese). 宋智超, 徐一鑫, 马重重, 等. 化工新型材料, 2024, 1006-3536, 1. 13 He X, Lu Q. Carbohydrate Polymers, 2023, 301, 120351. 14 Ping X X, Xu H W, Dong H Q, et al. China Pulp & Paper, 2024, 43(7), 135. (in Chinese). 平欣鑫, 徐华炜, 董涵琦, 等. 中国造纸, 2024, 43(7), 135. 15 De France K J. The Canadian Journal of Chemical Engineering, 2024, 102(8), 2695. 16 Xu X J, Gao H, Zhu J L. Chinese Journal of Liquid Crystals and Displays, 2023, 38 (8), 997. (in Chinese). 许雪敬, 高涵, 朱吉亮. 液晶与显示, 2023, 38(8), 997. 17 Wang Y, Zheng X, Zhong W, et al. Polymer Chemistry, The Royal Society of Chemistry, 2022, 13(36), 5200. 18 Wang Q, Niu W, Feng S, et al. American Chemical Society Nano, 2023, 17(15), 14283. 19 Liu W, Si C L, Du H S, et al. Journal of Forestry Engineering, 2019, 4(5), 11. (in Chinese). 刘慰, 司传领, 杜海顺, 等. 林业工程学报, 2019, 4(5), 11. 20 Du Y, Feng G. Green Chemistry, The Royal Society of Chemistry, 2023, 25(21), 8349. 21 Dong F X. In:Proceedings of the 19th Annual Conference of China Paper Society [C]. China Paper Society, 2020, pp.7. (in Chinese). 董凤霞. 中国造纸学会第十九届学术年会论文集. 中国造纸学会, 2020, pp.7. 22 Zhang X, Qin M, Xu M, et al. European Polymer Journal, 2021, 146, 110268 23 Li B, Han Y, Zhang Y, et al. Cellulose, 2020, 27(17), 9913. 24 Atifi S, Su S, Hamad W Y. Nordic Pulp & Paper Research Journal, De Gruyter, 2014, 29(1), 95. 25 Wang J W, Shen H, Zhang S Y, et al. Shanghai Plastics, 2023, 51(6), 1. (in Chinese). 王军雯, 沈豪, 张诗禹, 等. 上海塑料, 2023, 51(6), 1. 26 Wang Z, Ding Y, Wang J. Nanomaterials, 2019, 9(10), 1397. 27 Xu Q, Ji Y, Sun Q, et al. Nanomaterials, 2019, 9(2), 253. 28 Boott C E, Tran A, Hamad W Y, et al. Angewandte Chemie International Edition, 2020, 59(1), 226. 29 Babaei-Ghazvini A, Acharya B. Chemical Engineering Journal, 2023, 476, 146585. 30 Tarhanlıİ, Senses E. Carbohydrate Polymers, 2023, 321, 121281. 31 Tang J, Javaid M U, Pan C, et al. Carbohydrate Polymers, 2020, 229, 115486. 32 Wu Y, Wang L, Qing Y, et al. Scientific Reports, 2017, 7(1), 4380. 33 Zhao D, Pang B, Zhu Y, et al. Advanced Materials, 2022, 34(10), 2107857. 34 Hiratani T, Kose O, Hamad W Y, et al. Materials Horizons, 2018, 5(6), 1076. 35 Jiang Y, Li G, Yang C, et al. Polymers, 2021, 13(8), 1219. 36 Nasseri R, Bouzari N, Huang J, et al. Nature Communications, 2023, 14(1), 6108. 37 Xiao G, Wang Y, Zhang H, et al. International Journal of Biological Macromolecules, 2021, 170, 272. 38 Sun W, Wang J, He M. Carbohydrate Polymers, 2023, 303, 120446. 39 Li X, Liu J, Zhang X. Advanced Functional Materials, 2023, 33(47), 2306208. 40 Emam H E, Shaheen T I. Carbohydrate Polymers, 2022, 278, 118925. 41 Duan C, Wang B, Li J, et al. Advanced Functional Materials, 2024, 34, 25. 42 Pei Z, Yu Z, Li M, et al. International Journal of Biological Macromolecules, 2021, 179, 324. 43 Li X, Yang Y, Valenzuela C, et al. Nano, 2023, 17(13), 12829. 44 Li P, Ling Z, Liu X, et al. Chemical Engineering Journal, 2023, 466, 143306. 45 Lee D, Park J, Hwang K, et al. Applied Nano Materials, 2024, 7(4), 3918. 46 Morozova S M, Korzhikova-Vlakh E G. Polymers, 2023, 15(24), 4689. 47 Lu T, Pan H, Ma J, et al. Applied Materials & Interfaces, 2017, 9(21), 18231. 48 Oechsle A L, Lewis L, Hamad W Y, et al. Chemistry of Materials, 2018, 30(2), 376. 49 Hu C, Bai L, Song F, et al. Carbohydrate Polymers, 2022, 296, 119929. 50 Sun W, Song Z, Wang J, et al. Carbohydrate Polymers, 2024, 332, 121946. 51 Cheng Q, Guo J, Cao X, et al. Chemical Engineering Journal, 2022, 439, 135670. 52 Chen G H, Cheng X Y, Zhai X, et al. Technology & Development of Chemical Industry, 2024, 53(4), 46. (in Chinese). 陈冠桦, 程欣瑶, 翟迅, 等. 化工技术与开发, 2024, 53(4), 46. 53 Shiraishi K, Takahashi S, Le K V, et al. Macromolecular Rapid Communications, 2020, 41(10), 1900631. 54 Cui Z Y, Li Y, Feng X, et al. Journal of Composites Science, 2024, 41(1), 240. (in Chinese). 崔琢玉, 李洋, 冯鑫, 等. 复合材料学报, 2024, 41(1), 240. 55 Yu M, Lin T, Yin X F, et al. Journal of Composites Science, 2024, 41(7), 3479. (in Chinese). 余梦, 林涛, 殷学风, 等. 复合材料学报, 2024, 41(7), 3479. 56 Yeung K K, Huang T, Hua Y, et al. Sensors Journal, 2021, 21(13), 14522. |
| [1] |
CHEN Jiwei, ZHU Huiwen, WANG Haibin, SANG Jianquan, LI Yanhua, XIONG Fen, LUO Jianxin. Hofmeister Effect-assisted One Step Fabrication of Ion-conductive, Anti-freezing, and Tough PVA Hydrogels[J]. Materials Reports, 2025, 39(9): 24050045-7. |
|
|
|
|