POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Hofmeister Effect-assisted One Step Fabrication of Ion-conductive, Anti-freezing, and Tough PVA Hydrogels |
CHEN Jiwei1,*, ZHU Huiwen1, WANG Haibin1, SANG Jianquan1, LI Yanhua1, XIONG Fen2, LUO Jianxin1,*
|
1 School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, Hunan, China 2 School of Computer Science and Engineering, Hunan Institute of Technology, Hengyang 421002, Hunan, China |
|
|
Abstract Due to the hydrogels with high-water content, hydrogels typically exhibit low mechanical properties and anti-freezing performance. Usually, these performances were improved by reducing the water content of the hydrogels. While this limited the applications of the hydrogels. This work used a one-step soaking method, utilizing the Hofmeister effect to induce the polyvinyl alcohol (PVA) polymer chain self-assemble forming a uniform hydrophobic entangled cross-linked network and hydrogen bond cross-linked network structure. The inorganic salt ions introduced in the Hofmeister effect can also form hydration with water molecules. These can endow the PVA hydrogels good mechanical flexibility and anti-freezing performance, constructing the PVA hydrogels with high mechanical flexibility (breaking strength and elongation at break of 25.02 MPa and 935%, respectively) and anti-freezing performance (freezing point of -47.6 ℃). Besides, the introduction of salt ions can also provide free-moving ions for the ionic conductivity of the hydrogels. This hydrogel with excellent comprehensive properties can be applied to the field of flexible ionic conductivity with wide operating temperature and mechanical performance requirements.
|
Published: 10 May 2025
Online: 2025-04-28
|
|
|
|
1 Chen J. Studies on fabrication and properties of physical crosslinked PVA-based hydrogels with antifreezing and conductivity. Ph. D. Thesis, Jiangnan University, China, 2023 (in Chinese). 陈继伟. 耐低温物理交联PVA 基水凝胶的强韧性调控及导电性能研究. 博士学位论文, 江南大学, 2023. 2 He H, Li H, Pu A, et al. Nature Communications, 2023, 14(1), 759. 3 Wang C, Liu Y, Qu X, et al. Advanced Materials, 2022, 34(16), 2105416. 4 Jian Y, Handschuh-Wang S, Zhang J, et al. Materials Horizons, 2021, 8(2), 351. 5 Zhao X. Soft Matter, 2014, 10(5), 672. 6 Sun J Y, Zhao X, Illeperuma W R K, et al. Nature, 2012, 489(7414), 133. 7 Lin S, Liu J, Liu X, et al. Proceedings of the National Academy of Sciences, 2019, 116(21), 10244. 8 Chen J, Shi D, Yang Z, et al. Journal of Power Sources, 2022, 532, 231326. 9 Chen J, Yang Z, Shi D, et al. Journal of Applied Polymer Science, 2020, 138(10), 49987. 10 Chen J, Shi D, Yang Z, et al. Journal of Materials Science, 2021, 56(14), 8887. 11 Xu L, Qiu D. Science China Materials, 2022, 65(2), 547. 12 Chen J, Yu Q, Shi D, et al. ACS Applied Energy Materials, 2021, 4(9), 9353. 13 Morelle X P, Illeperuma W R, Tian K, et al. Advanced Materials, 2018, 30(35), 1801541. 14 Sun W, Wang J, He M. Carbohydrate Polymers, 2023, 303, 120446. 15 Fang X. Mechanically robust and highly elastic polymeric hydrogels with self-healing ability. Ph. D. Thesis, Jilin University, China, 2020 (in Chinese). 房旭. 高强度、高弹性与自修复的聚合物水凝胶. 博士学位论文, 吉林大学, 2020. 16 Liu D, Cao Y, Jiang P, et al. Small, 2023, 19(14), 2206819. 17 Yan G, He S, Chen G, et al. Nano-Micro Letters, 2022, 14(1), 84. 18 Lin S, Liu X, Liu J, et al. Science Advances, 2019, 5(1), eaau8528. 19 Hassan C M, Peppas N A. Macromolecules, 2000, 33(7), 2472. 20 Zhu X, Ji C, Meng Q, et al. Small, 2022, 18(16), 2200055. 21 Yu Z, Liu J, He H, et al. Carbohydrate Polymers, 2021, 255, 117485. 22 Holloway J L, Lowman A M, Palmese G R. Soft Matter, 2013, 9(3), 826. 23 Liu J, Lin S, Liu X, et al. Nature Communications, 2020, 11(1), 1071. 24 Gong J P. Science, 2014, 344(6180), 161. 25 Sun M, Li H, Hou Y, et al. Science Advances, 2023, 9(7), eade6973. 26 Wang H, Lu J, Huang H, et al. Journal of Colloid and Interface Science, 2021, 588, 295. |
|
|
|