INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Comparative Analysis and Prospect of Key Materials for Hydrogen Production by Chlor-alkali Electrolysis and Alkaline Water Electrolysis |
XU Yuxiang1,2, ZHANG Bing2, DONG Qian2, ZHU Qixuan1, TANG Hong2, CHEN Song3, XU Guiyin1,*
|
1 State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China 2 Jiangsu Ancan Technology Co., Ltd., Wuxi 214400, Jiangsu, China 3 School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, China |
|
|
Abstract Hydrogen energy as a green and clean energy can be effectively obtained by electrolysis technology, chlor-alkali is a typical industry in industrialized production of electrolytic technology. The development course and principles of hydrogen production by-product from chlor-alkali industry and alkaline water electrolysis are compared. It is considered that the technical route of alkaline water electrolysis hydrogen production is mature, which is the fastest method for large-scale industrial production at present. At the same time, the development, survey of industrial application and latest research of electrode materials, catalysts and membrane materials in chlor-alkali electrolyzer and alkaline water hydrogen electrolyzer respectively were discussed. Through comparison, the research and development ideas of hydrogen production by alkaline water electrolysis and chlor-alkali electrolysis can learn from each other are obtained, the industrial application and development direction of electrodes and membranes with these two technologies as key materials are compared systematically, which provides basis for reducing energy consumption and improving the performance of electrolyzers, and further promotes the development of hydrogen production by alkaline water electrolysis technology.
|
Published:
Online: 2025-08-28
|
|
|
|
1 Chen Q, Tan Z C. China Industry & Information Technology, 2024(5), 20 (in Chinese). 陈群, 谭忠超. 中国工业和信息化, 2024(5), 20. 2 Liu Y D, Guo H X, Ouyang X P. Strategic Study of Chinese Academy of Engineering, 2021, 23(4), 162 (in Chinese). 刘应都, 郭红霞, 欧阳晓平. 中国工程科学, 2021, 23(4), 162. 3 Shao Z G, Yi B L. Bulletin of Chinese Academy of Sciences, 2019, 34(4), 469 (in Chinese). 邵志刚, 衣宝廉. 中国科学院院刊, 2019, 34(4), 469. 4 Zhang J J, Liu W F, Sun F, et al. Sustainable Development, 2023, 13(2), 572 (in Chinese). 张晶晶, 刘未杰, 孙芃, 等. 可持续发展, 2023, 13(2), 572. 5 Liu S M, Shi L. China Coal, 2021, 47(6), 53 (in Chinese). 刘思明, 石乐. 中国煤炭, 2021, 47(6), 53. 6 Zheng J B. China Chlor-Alkali, 2023, 1(1), 1 (in Chinese). 郑结斌. 中国氯碱, 2023, 1(1), 1. 7 Wu Z Y, Zhang X. Guangdong Chemical Industry, 2024, 1(1), 51 (in Chinese). 吴振宇, 张轩. 广东化工, 2024, 1(1), 51. 8 Wan L, Xu Z A, Wang P X, et al. Chemical Industry and Engineering Progress, 2022, 41(3), 1556 (in Chinese). 万磊, 徐子昂, 王培灿, 等. 化工进展, 2022, 41(3), 1556. 9 Dubouis N, Aymé-Perrot D, Degoulange D, et al. Joule, 2024, 8, 883. 10 David M, Ocampo-Martínez C, Sánchez-Peña R, et al. Journal of Energy Storage, 2019, 23, 392. 11 Liu R, Xu Z, Li F, et al. Chemical Society Reviews, 2023, 16, 5345. 12 Xu Y, Zhao Y, Yuan Z, et al. Journal of Materials Chemistry A, 2024, 12, 18751. 13 Li D, Motz A, Bae C, et al. Energy & Environmental Science, 2021, 14, 3393. 14 Xu Q, Zhang L, Zhang J, et al. Journal of Energy Chemistry, 2022, 4, 100087. 15 Bi L, Boulfrad S, Traversa E. Chemical Society Reviews, 2014, 43, 8255. 16 Lv Z, Chen G, Wei K, et al. International Journal of Hydrogen Energy, 2024, 55, 386. 17 Li K, Fan Q, Chuai H, et al. Transactions of Tianjin University, 2021, 27, 202. 18 Xia Y M. Tianjin Chemical Industry, 2019, 33(3), 62 (in Chinese). 夏优美. 天津化工, 2019, 33(3), 62. 19 Zhu J, Zhao W, Xu Y X. China Chlor-Alkali, 2022(6), 5 (in Chinese). 朱俊, 赵伟, 徐宇翔, 等. 中国氯碱, 2022(6), 5. 20 朱立人, 杨国华, 吴彬, 等. 中国专利, CN216074047U, 2022. 21 杨国华, 唐宏, 朱立人, 等. 中国专利, CN216663251U, 2022. 22 杨国华, 朱俊, 唐建军, 等. 中国专利, CN110965070B, 2021. 23 杨国华, 徐文新, 唐宏, 等. 中国专利, CN207699683U, 2018. 24 徐文新. 中国专利, CN102703924B, 2012. 25 吴彬, 杨国华, 朱立人, 等. 中国专利, CN216074050U, 2022. 26 徐文新, 唐宏, 杨国华, 等. 中国专利, CN113584510B, 2021. 27 Naimi Y, Antar A. Advances In Hydrogen Generation Technologies, DOI:10.5772/intechopen.76814. 28 Sapountzi F M, Gracia J M, Fredriksson H, et al. Progress in Energy and Combustion Science, 2017, 58, 1. 29 杨国华, 孙鑫豪, 朱俊, 等. 中国专利, CN212375406U, 2021. 30 吴彬, 杨国华, 朱立人, 等. 中国专利, CN217104089U, 2022. 31 杨国华, 黄建刚, 马培岚, 等. 中国专利, CN111058055B, 2021. 32 Beer H. Journal of the Electrochemical Society, 1980, 127, 303C. 33 Hu Y Y. Materials Protection, 2020, 53(7), 46 (in Chinese). 胡媛媛. 材料保护, 2020, 53(7), 46. 34 Hu Y Y. Guangdong Chemical Industry, 2018, 10(53), 112 (in Chinese). 胡媛媛. 广东化工, 2018, 10(53), 112. 35 徐宇翔, 张冰, 唐宏, 等. 中国专利, CN116024600B, 2023. 36 徐坚, 唐宏, 陈晓丽. 中国专利, CN108048865B, 2020. 37 胡媛媛, 陈晓丽. 中国专利, CN108048862B, 2020. 38 徐坚. 中国专利, CN104532291B, 2015. 39 徐坚. 中国专利, CN204080123U, 2015. 40 徐文新. 中国专利, CN102703925B, 2012. 41 Wang L, Sun L, Cao Y, et al. Composites and Advanced Materials, 2020, 29, 1. 42 Yasumura J. Nature, 1954, 173, 80. 43 Balas W, Dempsey J, Rexer E. Journal of Applied Physics, 1955, 26, 1163. 44 Li M Y. Guangdong Chemical Industry, 2015, 42(7), 114 (in Chinese). 李茂营. 广东化工, 2015, 42(7), 114. 45 胡媛媛, 陈晓丽. 中国专利, CN108070877B, 2018. 46 Li S J, Ju H, Cai T X, et al. Chlor-Alkali Industry, 2010, 46(11), 13 (in Chinese). 李淑娟, 鞠鹤, 蔡天晓, 等. 氯碱工业, 2010, 46 (11), 13. 47 Reier T, Oezaslan M, Strasser P. Journal of the American Chemical Society, 2012, 2(8), 1765. 48 Li L, Wang P, Shao Q, et al. Advanced Materials, 2021, 50, 1. 49 Rinawati M, Wang Y, Chen K, et al. Chemical Engineering Journal, 2021, 423, 130204. 50 Di L, Pacchioni G, Shao H, et al. The Journal of Physical Chemistry C, 2023, 127, 10127. 51 Lee J, Lee S, Kim Y, et al. Vacuum, 2024, 220, 112843. 52 Wang Z, Xiao B, Li Z, et al. Journal of Energy Chemistry, 2021, 54, 510. 53 Chi B, Li J, Han Y, et al. Materials Letters, 2004, 58(9), 1415. 54 徐宇翔, 张冰, 唐宏, 等. 中国专利, CN219689888U, 2023. 55 Han Q, Wei X J, Liu K R. The Chinese Journal of Nonferrous Metals, 2001, 1(z1), 158 (in Chinese). 韩庆, 魏绪钧, 刘奎仁. 中国有色金属学报, 2001, 1(z1), 158. 56 Zuo Y, Bellani S, Saleh G, et al. Journal of the American Chemical Society, 2023, 145, 21419. 57 Yang J, Yang S, An L, et al. American Chemical Society Catalysis, 2024, 14, 3466. 58 Zhang J, Dang J, Zhu X, et al. Applied Catalysis B:Environment and Energy, 2023, 325, 122296. 59 Anantharaj S, Karthick K, Venkatesh M, et al. Nano Energy, 2017, 39, 30. 60 Feng Y, Li Z, Li S, et al. Journal of Energy Chemistry, 2022, 66, 493. 61 Fang D, Jiang L S, Wu Z D, et al. Chlor alkali technology, Chemical Industry Press, China, 1990, pp. 69 (in Chinese). 方度, 蒋兰荪, 吴正德, 等. 氯碱工艺学, 化学工业出版. 1990, pp. 69. 62 Song H, Yang H, Yu X, et al. Ionics, 2024, 30, 1223. 63 Yan X, Yang X, Su X, et al. Journal of Power Sources, 2020, 480, 228805. 64 Hu X, Liu M, Huang Y, et al. Journal of Membrane Science, 2022, 663, 121005. 65 Ito H, Manabe A. Chlor-alkali Electrolysis, 2022, 281. 66 徐文新, 马培岚, 朱俊, 等. 中国专利, CN111826680B, 2020. 67 高兴旺, 唐宏, 徐坚, 等. 中国专利, CN106739035B, 2019. 68 Hu X, Liu M, Huang Y, et al. Journal of Membrane Science, 2022, 663, 121005. 69 Shen Y J, Zhou Z F, Lv D F, et al. Chemical Engineer, 2009, 23(8), 4 (in Chinese). 沈英静, 周振芳, 吕东方, 等. 化学工程师, 2009, 23(8), 4. 70 Zhu Q, Zhang T, Zhu X, et al. Energy Material, 2024, 4, 400016. 71 Lee J, Lee J, Lee C, et al. Chemical Engineering Journal, 2022, 428, 131149. 72 Kumar S, Himabindu V. Materials Science for Energy Technologies, 2019, 2, 442. 73 Park E, Maurya S, Hibbs M, et al. Macromolecules, 2019, 52, 5419. 74 Faid A, Sunde S. Energy Technology, 2022, 10, 2200506. 75 Qian S T, He Y, Weng W B, et al. Advances in New and Renewable Energy, 2024, 12(1), 1 (in Chinese). 钱圣涛, 何勇, 翁武斌, 等. 新能源进展, 2024, 12(1), 1. |
|
|
|