| INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
| Visualization-based Study on the Penetration Process of Liquid Carbon Dioxide-assisted Injection Molding Process |
| YANG Fan1, LIU Hesheng2,*, KUANG Tangqing2,*, LIANG Jiankang2
|
1 Fundamental Experiment and Engineering Practice Center, East China Jiaotong University, Nanchang 330013, China 2 School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China |
|
|
|
|
Abstract To overcome the invisibility of the molding process within enclosed cavities in the fluid-assisted injection molding (FAIM) and its derivative processes, study the penetration process of fluid and projectile, a set of visual molds was designed to capture the flow behavior of the melt and the penetration process of fluid in the cavity through a high-speed camera. Based on this, the penetration morphology and penetration speed of fluid during the process were obtained, thus analyzing the penetration mechanism of the process. The results indicate that both the penetration fronts of the fluid and the projectile exhibit streamlined shapes, and the occurrence of defects in the tubular parts is closely related to changes in the physical properties of the medium fluid. In liquid carbon dioxide-assisted injection molding (LCO2-AIM), an increased melt injection volume within a certain range leads to improved inner wall quality of the formed tubular parts, while a higher fluid injection pressure results in a more signi-ficant reduction in fluid penetration velocity. In liquid carbon dioxide-powered projectile-assisted injection molding (LCO2-PAIM), as the fluid injection pressure increases, the penetration speed of the projectile in the visualization area increases and the decrease decreases; as the injection delay time of projectile increases, the trend of the projectile penetration speed is similar, and the decrease in magnitude decreases.
|
|
Published: 10 November 2025
Online: 2025-11-10
|
|
|
|
|
1 Liu X P, Pan H, Xiang D. Machinery Design & Manufacture, 2012(11), 1(in Chinese). 刘学平, 潘灏, 向东. 机械设计与制造, 2012(11), 1. 2 Fan Z J, Gui L J, Su R Y. Journal of Automotive Safety and Energy, 2014, 5(1), 1(in Chinese). 范子杰, 桂良进, 苏瑞意. 汽车安全与节能学报, 2014, 5(1), 1. 3 Deng L X. Engineering Plastics Application, 2013, 41(6), 54(in Chinese). 邓丽霞. 工程塑料应用, 2013, 41(6), 54. 4 Czepiel M, Bańkosz M, Sobczak-Kupiec A. Materials, 2023, 16(17), 5802. 5 Liu X H, Pan Y M, Zheng G Q, et al. Macromolecular Materials and Engineering. 2018, 303(8), 1. 6 Zhang W, Kuang T Q, Liu H S, et al. Journal of Polymer Engineering, 2022, 42(4), 362. 7 Liu T, Kuang T Q, Lai J M, et al. Journal of East China Jiaotong University, 2021, 38(3), 102(in Chinese). 刘天, 匡唐清, 赖家美, 等. 华东交通大学学报, 2021, 38(3), 102. 8 Yu Z, Liu H S, Kuang T Q, et al. Journal of Applied Polymer Science, 2020, 137 (47), 1. 9 Kuang T Q, Pan J Y, Feng Q, et al. Polymer Engineering & Science, 2019, 59(2), 295. 10 Chen Z S, Liu H S, Yu Z, et al. Polymer Materials Science & Engineering, 2020, 36(2), 112(in Chinese). 陈忠仕, 柳和生, 余忠, 等. 高分子材料科学与工程, 2020, 36(2), 112. 11 Yu Z, Liu H S, Kuang T Q, et al. Advances in Polymer Technology, 2020, 2020, 1. 12 Huang Y B, Zhang K, Yu Z, et al. Polymer Materials Science & Engineering, 2023, 39 (11), 82(in Chinese). 黄益宾, 章凯, 余忠, 等. 高分子材料科学与工程, 2023, 39 (11), 82. 13 Zhong L H, Kuang T Q, Lai J M, et al. China Plastics, 2021, 35(5), 11(in Chinese). 钟罗浩, 匡唐清, 赖家美, 等. 中国塑料, 2021, 35(5), 11. 14 Wang J M, Kuang T Q, Liu H S, et al. Acta Materiae Compositae Sinica, 2024, 41(5), 2436(in Chinese). 王佳敏, 匡唐清, 柳和生, 等. 复合材料学报, 2024, 41(5), 2436. 15 Huang D Y, Liu H S, Kuang T Q, et al. Advances in Materials Science and Engineering, DOI:10. 1155/2022/6596464. 16 Kuang T Q, Feng Q, Liu T, et al. Advances in Polymer Technology, DOI:10. 1155/2020/6861216. 17 Huang D Y, Liu H S, Kuang T Q, et al. Advances in Polymer Technology, DOI:10. 1155/2022/9968902. 18 Yokoi H, Hayasaki S. Journal of Flow Visualization and Image Processing, 2000, 7, 231. 19 Yang S Y, Liou S J, Liou W N. Advances in Polymer Technology, 1997, 16, 175. 20 Liu S J, Wu Y C. Polymer Testing, 2007, 26, 232. 21 Liu X H, Huang H X. China Plastics, 2009, 23(3), 58(in Chinese). 刘旭辉, 黄汉雄. 中国塑料, 2009, 23(3), 58. 22 Jiang K Y, Duan F, Tian J N, et al. Polymer Materials Science & Engineering, 2012, 28(11), 129(in Chinese). 姜开宇, 段飞, 田净娜, 等. 高分子材料科学与工程, 2012, 28(11), 129. 23 Gao M, Shen N N, Zhang L X, et al. China Measurement & Test, 2021, 47(2), 32(in Chinese). 高明, 申楠楠, 章立新, 等. 中国测试, 2021, 47(2), 32. 24 Zhang Z J, Li M, Zhang L Q, et al. Low Temperature and Specialty Gases, 2023, 41(5), 8(in Chinese). 庄正杰, 李明, 张立清, 等. 低温与特气, 2023, 41(5), 8. 25 Polikhronidi N, Batyrova R, Aliev A, et al. Journal of Thermal Science, 2019, 28(3), 394. 26 Kuang T Q, Deng Y, Yu C C, et al. Polymer Materials Science & Engineering, 2015, 31(4), 121. 匡唐清, 邓洋, 余春丛, 等. 高分子材料科学与工程, 2015, 31(4), 121. |
|
|
|