METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
The Effect of Mg Content on the Microstructure, Wear Resistance, and Corrosion Resistance of Powder Zinc Infiltration Layer |
GU Jian1,*, LIU Jinghua2, WANG Xiulong2, LIU Shengchun1, SI Jiajun1, WANG Xinxin3
|
1 China Electric Power Research Institute, Beijing 102401, China 2 State Grid Corporation of China, Beijing 100031, China 3 Electric Power Research Institute of State Grid Xinjiang Electric Power Company Limited, Urumqi 830000, China |
|
|
Abstract Aiming at the problems of poor wear and corrosion resistance of transmission line fittings as well as high manufacturing pollution, thiswork proposed to prepare Zn-Mg alloy zinc infiltration layers with different Mg contents by using mechanical energy assisted infiltration method. The surface characteristic of this layer was observed by scanning electron microscope (SEM), the wear resistance of this layer layer was tested by wear tester at both room and low temperatures, and the corrosion resistance of this layer was tested by an electrochemical workstation. The results showed that with the increase of Mg content, the surface flatness of the zinc infiltration layer increased first and then decreased, and when the Mg content was 4%(mass fraction), the zinc-infiltrated surface was the smoothest. After the addition of Mg, the permeability layer of Zn-Mg alloy is mainly composed of FeZn10.98 phase, FeZn6.67 phase, MgZn2 phase and Mg2Zn11 phase. The Zn-Mg alloy zinc infiltration layer has the best room-temperature abrasion-resistant performance when the Mg content is 4%, and it has the best low-temperature abrasion-resistant performance and corrosion-resistant performance when the Mg content is 6%.
|
Published: 25 June 2025
Online: 2025-06-19
|
|
|
|
1 Chen Y X, Nl Q Z, Lin D Y, et al. Materials Reports, 2016, 30(21), 89 (in Chinese). 陈云翔, 倪清钊, 林德源, 等. 材料导报, 2016, 30(21), 89. 2 Huang L, Song S, Liu C, et al. Journal of Electric Power Science and Technology, 2024, 39(4), 33 (in Chinese). 黄力, 宋爽, 刘闯, 等. 电力科学与技术学报, 2024, 39(4), 33 . 3 Zhou H F, Li F R, Wang H, et al. Surface Technology, 2024,(21)53, 208 (in Chinese). 周海飞, 李凤瑞, 王河, 等. 表面技术, 2024, (21)53, 208. 4 Wang X X, Liu Y, Zhang B, et al. Applied Laser, 2023, 43(3), 59 (in Chinese). 王欣欣, 刘阳, 张博, 等. 应用激光, 2023, 43(3), 59. 5 Hosking N C, Ström M A, Shipway P H, et al. Corrosion Science, 2007, 49(9), 3669. 6 Prosek T, Persson D, Stoulil J, et al. Corrosion Science, 2014(86), 231. 7 Duchoslav J, Steinberger R, Arndt M, et al. Corrosion Science, 2015(91), 311. 8 Yu W G, Li Y P, Liu C L, et al. Corrosion and Protection, 2017, 38(5), 387. (in Chinese). 于武刚, 李远鹏, 刘灿楼, 等. 腐蚀与防护, 2017, 38(5), 387. 9 Ferguson D. Clean Technologies and Environmental Policy, 2006, 8(3), 198. 10 Liang Y, Zhou Y L, Sheng Z Q, et al. China Surface Engineering, 2020, 33(2), 65 (in Chinese). 梁义, 周云龙, 盛忠起, 等. 中国表面工程, 2020, 33(2), 65. 11 Xu C J, Zhang J X, Tian J, et al. Transactions of Materials and Heat Treatment, 2015, 36(7), 205. 徐春杰, 张金皛, 田军, 等. 材料热处理学报, 2015, 36(7), 205. 12 Wu G S, Zeng X Q, Guo X W, et al. Journal of Materials Engineering, 2006(1), 61. 吴国松, 曾小勤, 郭兴伍, 等. 材料工程, 2006(1), 61. 13 Natrup F, Graf W. Thermochemical Surface Engineering of Steels. Oxford:Woodhead Publishing, 2015, pp.737. 14 Liu Q Y, Yue L J, Shen W. Corrosion & Protection, 2022, 43(6), 53 (in Chinese). 刘秋元, 乐林江, 沈伟. 腐蚀与防护, 2022, 43(6), 53. 15 Huang J H. Heat Treatment, 2012, 27(5), 74 (in Chinese). 黄建洪. 热处理, 2012, 27(5), 74. 16 Zhu X P, Zhao M G, Gao H, et al. Electeoplating & Finishing, 2017, 36(23), 1260 (in Chinese). 朱孝培, 赵麦群, 高辉, 等. 电镀与涂饰, 2017, 36(23), 1260. 17 Zhang Y, Yao C W, Zhang L Y, et al. Mechanical Engineering Materials, 2014, 38(11), 60 (in Chinese). 张跃, 姚长文, 张灵宇, 等. 机械工程材料, 2014, 38(11), 60. 18 Chai W, He W P, Wei L J, et al. Environmental Technology, 2022, 40(6), 55 (in Chinese). 柴武, 何卫平, 韦利军, 等. 环境技术, 2022, 40(6), 55. 19 Ma Q H, Fu D H, Dong Z J. China Surface Engineering, 2009, 22(6), 61 (in Chinese). 马青华, 付大海, 董作敬. 中国表面工程, 2009, 22(6), 61. 20 Xu P H, Wang S M, Le L J, et al. China Surface Engineering, 2022, 35(1), 135 (in Chinese). 徐鹏辉, 王胜民, 乐林江, 等. 中国表面工程, 2022, 35(1), 135. 21 Hu Z, Li Y, Lu B, et al. Optics & Laser Technology, 2022, 155, 108449. 22 Zhang G S, Wang W C, Liu T, et al. Hot Working Technology, 2024, 1, DOI:10.14158/j.cnki.1001-3814.20223539 (in Chinese). 张国松, 王文超, 刘涛, 等. 热加工工艺, 2024, 1, DOI:10.14158/j.cnki.1001-3814.20223539. 23 Chen C X, Zuo Y Q, Liu B X, et al. Surface Technology, 2018, 47(12), 166 (in Chinese). 陈翠欣, 左玉强, 刘宝玺, 等. 表面技术, 2018, 47(12), 166. 24 Li Y, Wang K, Fu H, et al. Applied Surface Science, 2022, 585, 152703. 25 Wei A, Tang Y, Tong T, et al. Coatings, 2022, 12(8). 26 Dai X, Xie M, Zhou S, et al. Journal of Alloys and Compounds, 2018(740), 194. 27 Yuan W, Li R, Chen Z, et al. Surface and Coatings Technology, 2021(405), 126582. 28 Xiao M, Wang S M, Wang Z B, et al. Materials Science and Technology, 2024, 32(4), 11(in Chinese). 肖敏, 王胜民, 王志斌, 等. 材料科学与工艺, 2024, 32(4), 11. 29 Ge T, Chen L, Gu P, et al. Optics & Laser Technology, 2022, 150, 107919. 30 Li W L, Xia Y L, Fang Y, et al. Journal of Manufacturing Processes. 2022, 84, 847. 31 Qiu X P, Liu X, Liu Q Y, et al. Chinese Journal of Vacuum Science and Technology, 2019, 39(6), 460. 32 Morishita M, Koyama K, Mori Y. ISIJ International, 1997, 37(1), 55. 33 Niu Z G, Guo P S, Ye H, et al. Journal of Chinese Society for Corrosion and Protection, 2017, 37(4), 347. 牛振国, 郭浦山, 叶宏, 等. 中国腐蚀与防护学报, 2017, 37(4), 347. 34 Xie Y, Wang Z, Hou Z F. Scripta Materialia, 2013, 68(7), 495. 35 Byun J M, Yu J M, Kim D K, et al. Journal of the Korean Institute of Metals and Materials, 2013, 51(6), 413. |
|
|
|