INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
NiO@CoFe LDH/NF Nanosheet Arrays for Efficient Oxygen Evolution Reaction |
XUE Shixiang, WU Pan, ZHAO Liang, LEI Wanying*
|
College of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China |
|
|
Abstract Exploring efficient, stable and inexpensive oxygen evolution reaction (OER) catalysts is the key to improve the efficiency of water electrolysis and reduce the cost of the electrolytic bath. By a three-step strategy combining hydrothermal, annealing and hydrothermal processes, NiO nanosheets arrays were prepared onto the substrate of Ni foam (NF), CoFe layer double hydroxide (CoFe LDH) nanosheets was in-situ synthesized along with the direction of nickel oxide (NiO) to construct self-supported NiO@CoFe LDH/NF electrode with sandwich structure. The thickness is about 110 nm, the interface of NiO and CoFe LDH is in close contact between this layer by layer stacking structure that could regulate the electronic structure of nanohybrids, generating a large amount of high valence of Co3+ and then improving the OER activity. The obtained electrode exhibits superior OER activity in alkaline solution with a lower overpotential of 224 mV (10 mA·cm-2) and 303 mV (100 mA·cm-2), a smaller Tafel slope of 52 mV·dec-1 and good durability. Mechanism analysis demonstrates this outstanding performance is ascribed to the large contact area and strong interfacial interaction between NiO and CoFe LDH, that enable electron transfer between two components, which could form the abundant active sites and then promote the intrinsic activity of catalysts.
|
Published:
Online: 2025-05-29
|
|
|
|
1 Tahir M, Pan L, Idrees F, et al. Nano Energy, 2017, 37, 136. 2 Tan C L, Cao X H, Wu X J, et al. Chemical Reviews, 2017, 117(9), 6225. 3 Abdalla A M, Hossain S, Nisfindy O B, et al. Energy Conversion and Management, 2018, 165, 602. 4 Zhang Y C, Han C, Gao J, et al. ACS Catalysis, 2021, 11(20), 12485. 5 Li Q, Chen Q, Jiang K, et al. International Journal of Hydrogen Energy, 2023, 48(46), 17501. 6 Li Q, Chen Q, Lei S, et al. Journal of Colloid and Interface Science, 2023, 631, 56. 7 Gu H Y, Shi G S, Chen H C, et al. ACS Energy Letters, 2020, 5(10), 3185. 8 Feng Y Q, Wang R, Dong P P, et al. ACS Applied Materials & Interfaces, 2021, 13(41), 48949. 9 Sun X, Guan X, Feng H, et al. Journal of Colloid and Interface Science, 2021, 604, 719. 10 Karmakar A, Karthick K, Sankar S S, et al. Journal of Materials Che-mistry A, 2021, 9(3), 1314. 11 Zhou Y, Hu J L, Yang L C, et al. Chinese Chemical Letters, 2022, 33(6), 2845. 12 Lei Y, Zhang L, Zhou D, et al. Renewable Energy, 2022, 194, 459. 13 Dou S, Wang X, Wang S. Small Methods, 2019, 3(1), 1800211. 14 Wang Y, Yan D, El Hankari S, et al. Advanced Science, 2018, 5(8), 1800064. 15 Yang L, Zhu G, Wen H, et al. Journal of Materials Chemistry A, 2019, 7(15), 8771. 16 Feng H, Sun X, Guan X, et al. Flatchem, 2021, 26, 100225. 17 Mechili M, Vaitsis C, Argirusis N, et al. Renewable and Sustainable Energy Reviews, 2022, 156, 111970. 18 Liu P, Ran J, Xia B, et al. Nano-Micro Letters, 2020, 12(1), 68. 19 Khan N A, Rashid N, Junaid M, et al. ACS Applied Energy Materials, 2019, 2(5), 3587. 20 Zhu Y X, Jiang M Y, Liu M, et al. Nanoscale, 2020, 12(6), 3803. 21 QayoomMugheri A, AneelaTahira, Aftab U, et al. Electrochimica Acta, 2019, 306, 9. 22 Sirisomboonchai S, Li S S, Yoshida A, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(2), 2327. 23 Zhang Y X, Yang M, Jiang X, et al. Journal of Alloys and Compounds, 2020, 818, 153345. 24 Lv J J, Wang L M, Li R S, et al. ACS Catalysis, 2021, 11(23), 14338. 25 Gao Z W, Ma T, Chen X M, et al. Small, 2018, 14(17), 1800195. 26 Tian M, Jiang Y, Tong H L, et al. ChemNanoMat, 2020, 6(1), 154. 27 He K, Tsega T T, Liu X, et al. Angewandte Chemie-International Edition, 2019, 58(34), 11903. 28 Xie Y M, Wang X F, Tang K, et al. Electrochimica Acta, 2018, 264, 225. 29 Bao J, Zhang X D, Fan B, et al. Angewandte Chemie International Edition, 2015, 54(25), 7399. 30 Gebreslase G A, Martínez-Huerta M V, Lázaro M J. Journal of Energy Chemistry, 2022, 67(4), 101. 31 Zhou T, Cao Z, Wang H, et al. RSC Advances, 2017, 7(37), 22818. 32 Arif M, Yasin G, Shakeel M, et al. Materials Chemistry Frontiers, 2019, 3(3), 520. 33 Hao C, Wu Y, An Y, et al. Materials Today Energy, 2019, 12, 453. 34 Ma P, Yang H, Luo Y, et al. ChemSusChem, 2019, 12(19), 4442. 35 Huang Y, Chen X, Ge S, et al. Catalysis Science & Technology, 2020, 10(5), 1292. 36 Gao W, Xia Z M, Cao F X, et al. Advanced Functioanl Materials, 2018, 28(11), 1706056. 37 Tahir M, Pan L, Zhang R R, et al. ACS Energy Letters, 2017, 2(9), 2177. 38 Zhang J Y, Qian J M, Ran J Q, et al. ACS Catalysis, 2020, 10(21), 12376. |
|
|
|