METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Microstructure Evolution and Crack Propagation Behaviors of the Primary Hole in Additive Manufactured GH3536 Reverse-flow Combustor Liner |
ZENG Qi1,2, NI Haohan3, LIU Wei4, LI Chaochao2, WANG Jiangwei3,*
|
1 School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China 2 AECC Hunan Aviation Plant Research Institute, Zhuzhou 412002, Hunan, China 3 School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China 4 AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China |
|
|
Abstract Additive manufacturing technology enables rapid near-net forming of complex-shape parts and has raised significant attention in the aerospace industry. However, the damage and failure behaviors of additive manufactured hot-part components under service conditions remain largely unclear. In this work, we employed laser powder-bed fusion to fabricate the GH3536 reverse-flow combustor liner and conducted combustion tests under realistic service conditions. By analyzing the microstructure, we revealed the mechanism of cracking induced failure of the primary hole, as well as the high-temperature oxidation and intergranular fracture behaviors during the crack propagation. These findings hold important implications for the safety design of additive manufacturing combustor liner under service conditions.
|
Published: 25 April 2025
Online: 2025-04-18
|
|
|
|
1 Backman D G,Williams J C. Science, 1992, 255(5048), 1082. 2 Huo M, Zhao H. Materials Reports, 2023, 37(17), 223 (in Chinese). 霍苗, 赵惠. 材料导报, 2023, 37(17), 223. 3 Hong J, Gao J H, Ma Y H, et al. Journal of Aerospace Power, 2010, 25(2), 388 (in Chinese). 洪杰, 高金海, 马艳红, 等. 航空动力学报, 2010, 25(2), 388. 4 Li Y L, Hong Z L. Aeronautical Manufacturing Technology, 2021, 64(14), 87 (in Chinese). 李玉龙, 洪智亮. 航空制造技术, 2021, 64(14), 87. 5 Xu S, Yu B. Metal Working(Metal Cutting), 2013(18), 61 (in Chinese). 许帅, 于冰. 金属加工(冷加工), 2013(18), 61. 6 Catchpole-Smith S, Aboulkhair N, Parry L, et al. Additive Manufacturing, 2017, 15, 113. 7 Alper Kanyilmaz, Ali Gökhan Demir, Martina Chierici, et al. Additive Manufacturing, 2022, 50, 102541. 8 Adrián Uriondo, Manuel Esperon-Miguez, Suresh Perinpanayagam. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229(11), 2132. 9 Gu D, Shi X, Poprawe R, et al. Science, 2021, 372, 6545. 10 Byron Blakey-Milner, Paul Gradl, Glen Snedden, et al. Materials & Design, 2021, 209, 110008. 11 Qu M, Guo Q, Escano L I, et al. Nature Communications, 2022, 13, 1079. 12 Bertsch K M, de Bellefon G M, Kuehl B, et al. Acta Materialia, 2020, 199, 19. 13 Sanchez-Mata O, Muñiz-Lerma J A, Wang X, et al. Materials Science and Engineering: A, 2020, 780, 139177. 14 Sun Shanshan, Teng Qing, Xie Yin, et al. Additive Manufacturing, 2021, 46, 102168. 15 Li W P, Yang L J. Acta Aeronautica et Astronautica Sinica, 2023, 44(9), 175 (in Chinese). 李伟平, 杨龙金. 航空学报, 2023, 44(9), 175. 16 Zhang J X, Cai Z B, Zhai W K, et al. Journal of Aerospace Power, DOI: 10. 13224/j. cnki. jasp. 20220812 (in Chinese). 张家祥, 蔡志斌, 翟维阔, 等. 航空动力学报, DOI: 10. 13224/j. cnki. jasp. 20220812. 17 Hao Zhibo, Tian Tian, Yang Yan, et al. Materials Research Express, 2019, 6, 1065e5. 18 Ren Dechun, Zhang Lianmin, Liu Yujing, et al. Journal of Materials Research and Technology, 2023, 26, 4595. 19 Arne Röttger, Karina Geenen, Matthias Windmann, et al. Materials Science and Engineering: A, 2016, 678, 365. 20 Tillmann W, Schaak C, Nellesen J, et al. Additive Manufacturing, 2017, 13, 93. 21 Li Bo, Liu Fei, Li Cong, et al. Corrosion Science, 2021, 188, 109554. 22 Traub H, Neuhäuser H, Schwink C. Acta Metallurgica, 1977, 25(4), 437. 23 Li Q T, Jing X N. Gas Turbine Experiment and Research, 1999(1), 40 (in Chinese). 李全通, 景小宁. 燃气涡轮试验与研究, 1999(1), 40. |
|
|
|